首页 > 代码库 > Maximal Rectangle
Maximal Rectangle
地址:https://oj.leetcode.com/problems/maximal-rectangle/
Given a 2D binary matrix filled with 0‘s and 1‘s, find the largest rectangle containing all ones and return its area.
首先吐槽下这个题目,不知道是我英语理解还是题目本身存在让人误解地方,我理解题意是最大的矩形包括所有1元素,按着这个理解我很开心的写了如下代码:代码思路很简单,类似杨氏矩阵中用到的思想:http://blog.csdn.net/huruzun/article/details/28420545
public class Solution { private char[][] matrix ; public int maximalRectangle(char[][] matrix) { if(matrix.length == 0){ return 0; } int row = matrix.length; int col = matrix[0].length; int ans = 0; this.matrix = matrix; Point start = new Point(); Point end = new Point(row-1,col-1); while(true){ if(isAllZeroDown(start, row)){ start.y = start.y+1 >=col ? col-1:start.y+1; if(start.equals(end)){ return 0; } } if(isAllZeroLeft(start, col)){ start.x = start.x+1 >=row ? row-1:start.x+1; if(start.equals(end)){ return 0; } } if(!isAllZeroDown(start, row) && !isAllZeroLeft(start, col)){ break; } } while(true){ if(isAllZeroRight(end)){ end.y = end.y-1>= 0 ? end.y-1:0; } if(isAllZeroUp(end)){ end.x = end.x-1>= 0 ? end.x-1:0; } if(!isAllZeroRight(end) && !isAllZeroUp(end)){ break; } } ans = Math.abs((end.x-start.x+1)*(end.y - start.y+1)); return ans; } boolean isAllZeroDown(Point p,int len){ int j = p.y; for(int i=p.x;i<len;i++){ if(matrix[i][j]=='1'){ return false; } } return true; } boolean isAllZeroLeft(Point p,int len){ int i = p.x; for(int j=p.y;j<len;j++){ if(matrix[i][j]=='1'){ return false; } } return true; } boolean isAllZeroUp(Point p){ int i = p.x; for(int j=p.y;j>=0;j--){ if(matrix[i][j]=='1'){ return false; } } return true; } boolean isAllZeroRight(Point p){ int j = p.y; for(int i=p.x;i>=0;i--){ if(matrix[i][j]=='1'){ return false; } } return true; }}
提交之后始终不对,然后开始网上搜索,才发现题目正确意思是:
找一个最大矩阵,里面全部是1。
例如下图:
根据这个图转换可以发现问题,看下图:
转到这个图就会发现,这就是:http://blog.csdn.net/huruzun/article/details/39717501里面说到的相同问题。
java代码:
public class Solution { public int largestRectangleArea(int[] height) { int maxarea = 0; Stack<Integer> sta = new Stack<>(); int top ; int top_area; int i = 0; while(i<height.length){ if(sta.isEmpty() || height[sta.peek()]<=height[i] ){ sta.push(i++); }else{ top = sta.pop(); top_area = height[top] * (sta.isEmpty()? i:i-sta.peek()-1); if(top_area>maxarea){ maxarea = top_area; } } } while(!sta.isEmpty()){ top = sta.pop(); top_area = height[top] * (sta.isEmpty()? i:i-sta.peek()-1); if(top_area>maxarea){ maxarea = top_area; } } return maxarea; } public int maximalRectangle(char[][] matrix){ if(matrix.length == 0){ return 0; } int row = matrix.length; int col = matrix[0].length; int [][]dp = new int[row][]; for(int i=0;i<row;i++){ dp[i] = new int[col]; } for(int j=0;j<col;j++){ if(matrix[0][j]=='1'){ dp[0][j] = 1; } } for(int j=0;j<col;j++){ for(int i=1;i<row;i++){ if(matrix[i][j] == '1'){ dp[i][j] = dp[i-1][j]+1; } } } int maxarea = 0; for(int i=0;i<row;i++){ int temp = largestRectangleArea(dp[i]); if(temp>maxarea){ maxarea = temp; } } return maxarea; }}
Maximal Rectangle
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。