首页 > 代码库 > LeetCode Maximal Rectangle

LeetCode Maximal Rectangle

class Solution {
public:
    int maximalRectangle(vector<vector<char> > &matrix) {
        int rows = matrix.size();
        if (rows == 0) return 0;
        int cols = matrix[0].size();
        if (cols == 0) return 0;
        cols++;
        
        int* memo = new int[cols * cols];
        for (int i=cols * cols - 1; i>=0; i--) memo[i] = 0;
        for (int i=1; i<cols; i++) memo[i * cols + i - 1] = 1;
        int max_rect = 0;
        for (int i=0; i<rows; i++) {
            vector<char>& row = matrix[i];
            for (int j = 1; j<cols; j++) {
                int base = j * cols;
                for (int k = j; k<cols; k++) {
                    if (row[k - 1] == 1 && memo[base + k - 1] > 0) {
                        int cur_rect = ++memo[base + k] * (k - j + 1);
                        if (cur_rect > max_rect) max_rect = cur_rect;
                    } else {
                        memo[base + k] = 0;
                    }
                }
            }
        }
        delete[] memo;
        return max_rect;
    }
};

O(n^3)暴力,用一个memo数组记录各个区段上的高度(memo[i+1][j+1]表示扫描到matrix中某一行时,该行[x_row][i...j]区间内的最低高度),用时250+ms,按照leetcode的一般时间范围,肯定有巧妙的解法,去zhuli哥看了一下,结合做max rectangular area in histogram那题可以把时间降到O(n^2),用时70+ms,缺乏灵活运用能力啊!下面给出代码

    int maximalRectangle(vector<vector<char> > &matrix) {
        int rows = matrix.size();
        if (rows == 0) return 0;
        int cols = matrix[0].size();
        if (cols == 0) return 0;

        vector<int> height(cols, 0);
        vector<int> L, R;
        L.resize(cols), R.resize(cols);
        
        int max_rect = 0;
        
        for (int i=0; i<rows; i++) {
            for (int j=0; j<cols; j++) {
                height[j] = matrix[i][j] == 1 ? height[j] + 1 : 0;
            }
            for (int j=0; j<cols; j++) {
                L[j] = j;
                while (L[j] - 1 >= 0 && height[L[j] - 1] >= height[j]) {
                    L[j] = L[L[j] - 1];
                }
            }
            for (int j=cols-1; j>=0; j--) {
                R[j] = j;
                while (R[j] + 1 < cols && height[R[j] + 1] >= height[j]) {
                    R[j] = R[R[j] + 1];
                }
            }
            for (int j=0; j<cols; j++) {
                int rect = (R[j] - L[j] + 1) * height[j];
                if (rect > max_rect) max_rect = rect;
            }
        }
        return max_rect;
    }

参考:

  http://www.cnblogs.com/zhuli19901106/p/3570175.html