首页 > 代码库 > UVA 10288 Coupons (概率)

UVA 10288 Coupons (概率)

题意:有n种纸片无限张,随机抽取,问平均情况下抽多少张可以保证抽中所有类型的纸片

 

题解:假设自己手上有k张,抽中已经抽过的概率为 s=k/n;那抽中下一张没被抽过的纸片概率为 (再抽一张中,两张中,三张中...)(1-s)*(1+2*s+3*s^3+...)=(1-s)*E

     s*E = (s+2*s^2+3*s^3+...);则E-s*E = (1+s+s^2+s^3+...)(等比数列,且公比不可能为1)=1/(1-s) = n/(n-k)

    所以总概率就是n*(1/n+1/(n-1)+...+1/2+1/1);注意需要约分,还有带分数的计算:(a b/c)*d = a*d+b*d/c

 

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=1<<28;
const ll INF=1LL<<60;
const double Pi=acos(-1.0);
const int Mod=1e9+7;
const int Max=200010;
ll inte,mole,demn;//分子 分母
int Gcd(ll a,ll b)
{
    return b==0LL?a:Gcd(b,a%b);
}
void Fraction(int n)//计算n*(1/1+1/2+...+1/n)
{
    mole=demn=1LL;
    inte=0LL;
    for(int i=2;i<=n;++i)
    {
        mole=mole*(ll)i+demn;
        demn*=(ll)i;
        ll gcd=Gcd(demn,mole);
        demn/=gcd;
        mole/=gcd;
        inte+=mole/demn;
        mole%=demn;
    }
    inte*=(ll)n;
    mole*=(ll)n;
    inte+=mole/demn;
    mole%=demn;
    ll gcd=Gcd(mole,demn);
    mole/=gcd;
    demn/=gcd;
//            printf("%I64d %I64d %I64d\n",inte,mole,demn);
    return;
}
int Length(ll n)//n的长度
{
    int m=0;
    while(n)
    {
        n/=10;
        m++;
    }
    return m;
}
void Print(int n)//之一输出格式
{
    if(demn==1LL){
        printf("%lld\n",inte);
    }else{
        int m=Length(inte)+1;
        for(int i=0;i<m;++i)
            printf(" ");
        printf("%lld\n%lld ",mole,inte);
        for(int i=0;i<Length(demn);++i)
            printf("-");
            printf("\n");
        for(int i=0;i<m;++i)
            printf(" ");
        printf("%lld\n",demn);
    }
    return;
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        Fraction(n);
        Print(n);
    }
    return 0;
}

 

UVA 10288 Coupons (概率)