首页 > 代码库 > uva 11427 - Expect the Expected(概率)
uva 11427 - Expect the Expected(概率)
题目链接:uva 11427 - Expect the Expected
题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结束游戏,若n局后仍没有,就会不开心,然后以后再也不完牌,问说你最多会玩多少个晚上。
解题思路:当j/i ≤ p时有dp(i-1,j) (1-p) + dp(i-1, j-1)p,其他dp(i,j) = 0.Q=∑d(n,i)
列出数学期望公式:
EX=Q+2Q(1?Q)+3Q(1?Q)2+…
s=EXQ=1+2(1?Q)+3(1?Q)2+…
(1?Q)?s=(1?Q)+2(1?Q)2+3(1?Q)3+…
EX=Qs=1+(1?Q)+(1?Q)2+(1?Q)3…
为等比数列,根据等比数列求和公式,n趋近无穷大是为1/Q
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 105;
double dp[maxn][maxn];
int main () {
int cas;
scanf("%d", &cas);
for (int kcas = 1; kcas <= cas; kcas++) {
int a, b, n;
scanf("%d/%d%d", &a, &b, &n);
double p = (double)a / b;
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
dp[0][1] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 0; j * b <= a * i; j++) {
dp[i][j] = dp[i-1][j] * (1-p);
if (j)
dp[i][j] += dp[i-1][j-1] * p;
}
}
double q = 0;
for (int i = 0; i * b <= a * n; i++)
q += dp[n][i];
printf("Case #%d: %d\n", kcas, (int)(1/q));
}
return 0;
}
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。