首页 > 代码库 > MapReduce编程(二) 排序
MapReduce编程(二) 排序
一、问题描述
文件中存储了商品id和商品价格的信息,文件中每行2列,第一列文本类型代表商品id,第二列为double类型代表商品价格。数据格式如下:
pid0 334589.41
pid1 663306.49
pid2 499226.8
pid3 130618.22
pid4 513708.8
pid5 723470.7
pid6 998579.14
pid7 831682.84
pid8 87723.96
要求使用MapReduce,按商品的价格从低到高排序,输出格式仍为原来的格式:第一列为商品id,第二列为商品价格。
为了方便测试,写了一个DataProducer类随机产生数据。
package com.javacore.hadoop;
import java.io.*;
import java.util.Random;
/**
* Created by bee on 3/25/17.
*/
public class DataProducer {
public static void doubleProcuder() throws Exception {
File f = new File("input/productDouble");
if (f.exists()) {
f.delete();
}
Random generator = new Random();
double rangeMin = 1.0;
double rangeMax = 999999.0;
FileOutputStream fos = new FileOutputStream(f);
OutputStreamWriter osq = new OutputStreamWriter(fos);
BufferedWriter bfw = new BufferedWriter(osq);
for (int i = 0; i < 100; i++) {
double pValue = http://www.mamicode.com/rangeMin + (rangeMax - rangeMin) * generator.nextDouble();"hljs-keyword">double) Math.round(pValue * 100) / 100;
try {
bfw.write("pid" + i + " " + pValue + "\n");
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
bfw.close();
osq.close();
fos.close();
System.out.println("写入完成!");
}
public static void main(String[] args) throws Exception {
doubleProcuder();
}
}
二、MapReduce程序
package com.javacore.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* Created by bee on 3/28/17.
*/
public class DataSortText {
public static class Map extends Mapper<Object, Text, DoubleWritable, Text> {
public static DoubleWritable pValue = http://www.mamicode.com/new DoubleWritable();
public static Text pId = new Text();
//
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String[] line = value.toString().split("\\s+");
pValue.set(Double.parseDouble(line[1]));
pId.set(new Text(line[0]));
context.write(pValue, pId);
}
}
public static class Reduce extends Reducer<DoubleWritable, Text,
Text, DoubleWritable> {
public void reduce(DoubleWritable key,Iterable<Text> values,
Context context) throws IOException, InterruptedException {
for (Text val:values){
context.write(val,key);
}
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
FileUtil.deleteDir("output");
Configuration conf=new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
String[] otherargs=new
String[]{"input/productDouble",
"output"};
if (otherargs.length!=2){
System.err.println("Usage: mergesort <in> <out>");
System.exit(2);
}
Job job=Job.getInstance();
job.setJarByClass(DataSortText.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(DoubleWritable.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job,new Path(otherargs[0]));
FileOutputFormat.setOutputPath(job,new Path(otherargs[1]));
System.exit(job.waitForCompletion(true) ? 0: 1);
}
}
三、输出
运行之后,输出结果如下。
pid8 87723.96
pid3 130618.22
pid9 171804.65
pid0 334589.41
pid10 468768.65
pid2 499226.8
pid4 513708.8
pid1 663306.49
pid5 723470.7
pid7 831682.84
pid6 998579.14
四、性能分析
为了测试MapReduce排序的性能,数据量分别用1万、10万、100万、1000万、1亿、5亿做测试,结果如下。
数量 | 文件大小 | 排序耗时 |
---|---|---|
1万 | 177KB | 6秒 |
10万 | 1.9MB | 6秒 |
100 万 | 19.7MB | 13秒 |
1000 万 | 206.8MB | 60秒 |
1亿 | 2.17GB | 9分钟 |
5亿 | 11.28GB | 41分钟 |
附机器硬件配置:
内存:8 GB 1867 MHz DDR3
CPU:2.7 GHz Intel Core i5
磁盘:SSD
MapReduce编程(二) 排序
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。