首页 > 代码库 > MapReduce编程(四) 求均值
MapReduce编程(四) 求均值
一、问题描述
三个文件中分别存储了学生的语文、数学和英语成绩,输出每个学生的平均分。
数据格式如下:
Chinese.txt
张三 78
李四 89
王五 96
赵六 67
Math.txt
张三 88
李四 99
王五 66
赵六 77
English.txt
张三 80
李四 82
王五 84
赵六 86
二、MapReduce编程
package com.javacore.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* Created by bee on 3/29/17.
*/
public class StudentAvgDouble {
public static class MyMapper extends Mapper<Object, Text, Text, DoubleWritable> {
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String eachline = value.toString();
StringTokenizer tokenizer = new StringTokenizer(eachline, "\n");
while (tokenizer.hasMoreElements()) {
StringTokenizer tokenizerLine = new StringTokenizer(tokenizer
.nextToken());
String strName = tokenizerLine.nextToken();
String strScore = tokenizerLine.nextToken();
Text name = new Text(strName);
IntWritable score = new IntWritable(Integer.parseInt(strScore));
context.write(name, score);
}
}
}
public static class MyReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
public void reduce(Text key, Iterable<DoubleWritable> values, Context
context) throws IOException, InterruptedException {
double sum = 0.0;
int count = 0;
for (DoubleWritable val : values) {
sum += val.get();
count++;
}
DoubleWritable avgScore = new DoubleWritable(sum / count);
context.write(key, avgScore);
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//删除output文件夹
FileUtil.deleteDir("output");
Configuration conf = new Configuration();
String[] otherArgs = new String[]{"input/studentAvg", "output"};
if (otherArgs.length != 2) {
System.out.println("参数错误");
System.exit(2);
}
Job job = Job.getInstance();
job.setJarByClass(StudentAvgDouble.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
三、StringTokenizer和Split的用法对比
map函数里按行读入,每行按空格切开,之前我采用的split()函数切分,代码如下。
String eachline = value.toString();
for (String eachline : lines) {
System.out.println("eachline:\t"+eachline);
String[] words = eachline.split("\\s+");
Text name = new Text(words[0]);
IntWritable score = new IntWritable(Integer.parseInt(words[1]));
context.write(name, score);
}
这种方式简单明了,但是也存在缺陷,对于非正常编码的空格有时候会出现切割失败的情况。
StringTokenizer是java.util包中分割解析类,StringTokenizer类的构造函数有三个:
StringTokenizer(String str)
:java默认的分隔符是“空格”、“制表符(‘\t’)”、“换行符(‘\n’)”、“回车符(‘\r’)。StringTokenizer(String str,String delim)
:可以构造一个用来解析str的StringTokenizer对象,并提供一个指定的分隔符。StringTokenizer(String str,String delim,boolean returnDelims)
:构造一个用来解析str的StringTokenizer对象,并提供一个指定的分隔符,同时,指定是否返回分隔符。StringTokenizer和Split都可以对字符串进行切分,StringTokenizer的性能更高一些,分隔符如果用到一些特殊字符,StringTokenizer的处理结果更好。
四、运行结果
张三 82.0
李四 90.0
王五 82.0
赵六 76.66666666666667
MapReduce编程(四) 求均值
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。