首页 > 代码库 > SGU 197.Nice Patterns Strike Back

SGU 197.Nice Patterns Strike Back

时间限制:0.5s

空间限制:6M

题意:

       给出长n(n<=10^100)和宽m(m<=5)的地面,铺上黑色和白色的地板,使得没有任意一个2*2大小的地面铺同种颜色的方案数是多少.

 

 

 

 

 

 

 

 

 

 

 

 

 


Solution:

             状态压缩,一个数字的对应为01分别代表铺白色和黑色地板,对于每一列有(1<<m)种状态.

             我们可以构造一个矩阵,mat[i][j]代表,第一列是状态是i,第二列是j的方案数,显然mat[i][j]不是0就是1,而且很容易判断构造.

             然后我们只要对这个矩阵进行快速幂运算,幂为(n-1),当然不要忘记取模,最后把mat所有元素加起来就是我们想要的答案了.

             由于n比较大,所以要做大数的减一,和除以二的运算.

 

code

#include <iostream>#include <cstring>#include <string>using namespace std;struct Mat {    int mat[100][100];} mx;int pow[109];int n, m, mod, len;Mat operator * (Mat a, Mat b) {    Mat c;    memset (c.mat, 0, sizeof c.mat);    for (int k = 0; k <  (1 << m); k++)        for (int i = 0; i <  (1 << m); i++)            for (int j = 0; j <  (1 << m); j++)                (c.mat[i][j] += (a.mat[i][k] * b.mat[k][j]) % mod) %= mod;    return c;}inline int div2() {    int ans[103] = {0};    int i, res = 0;    for(i = 0; i < len; ++i) {        ans[i] = (pow[i]+res*10)/2;        res = (pow[i]+res*10)%2;    }    if(ans[0] == 0) len--;    for(i = 0+(ans[0] == 0); i < len+(ans[0] == 0); i++)        pow[i-(ans[0] == 0)] = ans[i];    return res;}Mat operator ^ (Mat a, int pow[]) {    Mat c;    for (int i = 0; i <  (1 << m); i++)        for (int j = 0; j <  (1 << m); j++)            c.mat[i][j] = (i == j);    while (len) {        if (div2() )                     c = c * a;        a = a * a;    }    return c;}string s;int main() {    ios::sync_with_stdio (0);    while(cin >> s >> m >> mod){    for (int i = 0; i < s.size(); ++i)        pow[i] = s[i] - 0;    len = s.size();    for (int i = len - 1; i >= 0; i--) {        if (pow[i]) {            --pow[i];            break;        }        else            pow[i] = 9;    }    if (pow[0] == 0) {        for (int i = 0; i < len - 1; i++) pow[i] = 9;        pow[--len]=0;    }    for (int i = 0; i < (1 << m); i++)        for (int j = 0; j < (1 << m); j++) {            mx.mat[i][j] = 1;            for (int k = 0, tem = i ^ j; k < m - 1; k++)                if (  (tem & 1 << k) == 0  && (tem & 1 << k + 1) == 0&&( ( (i & 1 << k) > 0 && (i & 1 << k + 1) > 0) || ( ( (i & 1 << k) == 0 && (i & 1 << k + 1) == 0) ) ) ) {                    mx.mat[i][j] = 0;                    break;                }        }    mx = mx ^ pow;    int ans = 0;    for (int i = 0; i < (1 << m); i++)        for (int j = 0; j < (1 << m); j++) {            ans += mx.mat[i][j];            while (ans >= mod) ans -= mod;        }    cout << ans << endl;    }}
View Code

 

             

 

SGU 197.Nice Patterns Strike Back