首页 > 代码库 > LA 3263 (平面图的欧拉定理) That Nice Euler Circuit

LA 3263 (平面图的欧拉定理) That Nice Euler Circuit

题意:

平面上有n个端点的一笔画,最后一个端点与第一个端点重合,即所给图案是闭合曲线。求这些线段将平面分成多少部分。

分析:

平面图中欧拉定理:设平面的顶点数、边数和面数分别为V、E和F。则 V+F-E=2

所求结果不容易直接求出,因此我们可以转换成 F=E-V+2

枚举两条边,如果有交点则顶点数+1,并将交点记录下来

所有交点去重(去重前记得排序),如果某个交点在线段上,则边数+1

 

  1 //#define LOCAL  2 #include <cstdio>  3 #include <cstring>  4 #include <algorithm>  5 #include <cmath>  6 using namespace std;  7   8 const int maxn = 300 + 10;  9  10 struct Point 11 { 12     double x, y; 13     Point(double x=0, double y=0) :x(x),y(y) {} 14 }; 15 typedef Point Vector; 16 const double EPS = 1e-10; 17  18 Vector operator + (Vector A, Vector B)    { return Vector(A.x + B.x, A.y + B.y); } 19  20 Vector operator - (Vector A, Vector B)    { return Vector(A.x - B.x, A.y - B.y); } 21  22 Vector operator * (Vector A, double p)    { return Vector(A.x*p, A.y*p); } 23  24 Vector operator / (Vector A, double p)    { return Vector(A.x/p, A.y/p); } 25  26 bool operator < (const Point& a, const Point& b) 27 { return a.x < b.x || (a.x == b.x && a.y < b.y); } 28  29 int dcmp(double x) 30 { if(fabs(x) < EPS) return 0; 31  else return x < 0 ? -1 : 1; } 32  33 bool operator == (const Point& a, const Point& b) 34 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 35  36 double Dot(Vector A, Vector B) 37 { return A.x*B.x + A.y*B.y; } 38  39 double Length(Vector A)    { return sqrt(Dot(A, A)); } 40  41 double Angle(Vector A, Vector B) 42 { return acos(Dot(A, B) / Length(A) / Length(B)); } 43  44 double Cross(Vector A, Vector B) 45 { return A.x*B.y - A.y*B.x; } 46  47 double Area2(Point A, Point B, Point C) 48 { return Cross(B-A, C-A); } 49  50 Vector VRotate(Vector A, double rad) 51 { 52     return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); 53 } 54  55 Point PRotate(Point A, Point B, double rad) 56 { 57     return A + VRotate(B-A, rad); 58 } 59  60 Vector Normal(Vector A) 61 { 62     double l = Length(A); 63     return Vector(-A.y/l, A.x/l); 64 } 65  66 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) 67 { 68     Vector u = P - Q; 69     double t = Cross(w, u) / Cross(v, w); 70     return P + v*t; 71 } 72 double DistanceToLine(Point P, Point A, Point B) 73 { 74     Vector v1 = B - A, v2 = P - A; 75     return fabs(Cross(v1, v2)) / Length(v1); 76 } 77  78 double DistanceToSegment(Point P, Point A, Point B) 79 { 80     if(A == B)    return Length(P - A); 81     Vector v1 = B - A, v2 = P - A, v3 = P - B; 82     if(dcmp(Dot(v1, v2)) < 0)    return Length(v2); 83     else if(dcmp(Dot(v1, v3)) > 0)    return Length(v3); 84     else return fabs(Cross(v1, v2)) / Length(v1); 85 } 86  87 Point GetLineProjection(Point P, Point A, Point B) 88 { 89     Vector v = B - A; 90     return A + v * (Dot(v, P - A) / Dot(v, v)); 91 } 92  93 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) 94 { 95     double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1); 96     double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); 97     return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; 98 } 99 100 bool OnSegment(Point P, Point a1, Point a2)101 {102     Vector v1 = a1 - P, v2 = a2 - P;103     return dcmp(Cross(v1, v2)) == 0 && dcmp(Dot(v1, v2)) < 0;104 }105 106 Point P[maxn], V[maxn*maxn];107 108 int main(void)109 {110     #ifdef    LOCAL111         freopen("3263in.txt", "r", stdin);112     #endif113 114     int n, kase = 0;115     while(scanf("%d", &n) == 1 && n)116     {117         for(int i = 0; i < n; ++i)118         {119             scanf("%lf%lf", &P[i].x, &P[i].y);120             V[i] = P[i];121         }122         n--;123         int c = n, e = n;124 125         for(int i = 0; i < n; ++i)126             for(int j = i+1; j < n; ++j)127                 if(SegmentProperIntersection(P[i], P[i+1], P[j], P[j+1]))128                     V[c++] = GetLineIntersection(P[i], P[i+1]-P[i], P[j], P[j+1]-P[j]);129 130         sort(V, V+c);131         c = unique(V, V+c) - V;132 133         for(int i = 0; i < c; ++i)134             for(int j = 0; j < n; ++j)135                 if(OnSegment(V[i], P[j], P[j+1]))    e++;136 137         printf("Case %d: There are %d pieces.\n", ++kase, e+2-c);138     }139 140     return 0;141 }
代码君

 

LA 3263 (平面图的欧拉定理) That Nice Euler Circuit