首页 > 代码库 > 稀疏自动编码之练习

稀疏自动编码之练习

从10幅图像中采样出10000幅小图像块,每个小图像块大小是8*8,利用采样出的图像作为样本学习,利用LBFGS进行优化.

下面是对10幅图像白化之后的结果:

 

train.m

%% CS294A/CS294W Programming Assignment Starter Code%  Instructions%  ------------% %  This file contains code that helps you get started on the%  programming assignment. You will need to complete the code in sampleIMAGES.m,%  sparseAutoencoderCost.m and computeNumericalGradient.m. %  For the purpose of completing the assignment, you do not need to%  change the code in this file. %%%======================================================================%% STEP 0: Here we provide the relevant parameters values that will%  allow your sparse autoencoder to get good filters; you do not need to %  change the parameters below.clear all;clc;visibleSize = 8*8;   % number of input units hiddenSize = 25;     % number of hidden units sparsityParam = 0.01;   % desired average activation of the hidden units.                     % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",             %  in the lecture notes). lambda = 0.0001;     % weight decay parameter       beta = 3;            % weight of sparsity penalty term       %%======================================================================%% STEP 1: Implement sampleIMAGES%%  After implementing sampleIMAGES, the display_network command should%  display a random sample of 200 patches from the datasetpatches = sampleIMAGES;display_network(patches(:,randi(size(patches,2),200,1)),8);%  Obtain random parameters thetatheta = initializeParameters(hiddenSize, visibleSize);%%======================================================================%% STEP 2: Implement sparseAutoencoderCost%%  You can implement all of the components (squared error cost, weight decay term,%  sparsity penalty) in the cost function at once, but it may be easier to do %  it step-by-step and run gradient checking (see STEP 3) after each step.  We %  suggest implementing the sparseAutoencoderCost function using the following steps:%%  (a) Implement forward propagation in your neural network, and implement the %      squared error term of the cost function.  Implement backpropagation to %      compute the derivatives.   Then (using lambda=beta=0), run Gradient Checking %      to verify that the calculations corresponding to the squared error cost %      term are correct.%%  (b) Add in the weight decay term (in both the cost function and the derivative%      calculations), then re-run Gradient Checking to verify correctness. %%  (c) Add in the sparsity penalty term, then re-run Gradient Checking to %      verify correctness.%%  Feel free to change the training settings when debugging your%  code.  (For example, reducing the training set size or %  number of hidden units may make your code run faster; and setting beta %  and/or lambda to zero may be helpful for debugging.)  However, in your %  final submission of the visualized weights, please use parameters we %  gave in Step 0 above.[cost, grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, lambda, ...                                     sparsityParam, beta, patches);%%======================================================================%% STEP 3: Gradient Checking%% Hint: If you are debugging your code, performing gradient checking on smaller models % and smaller training sets (e.g., using only 10 training examples and 1-2 hidden % units) may speed things up.% First, lets make sure your numerical gradient computation is correct for a% simple function.  After you have implemented computeNumericalGradient.m,% run the following: checkNumericalGradient();% Now we can use it to check your cost function and derivative calculations% for the sparse autoencoder.  numgrad = computeNumericalGradient( @(x) sparseAutoencoderCost(x, visibleSize, ...                                    hiddenSize, lambda,sparsityParam,...                                    beta,patches), theta);% Use this to visually compare the gradients side by sidedisp([numgrad grad]); % Compare numerically computed gradients with the ones obtained from backpropagationdiff = norm(numgrad-grad)/norm(numgrad+grad);disp(diff); % Should be small. In our implementation, these values are            % usually less than 1e-9.            % When you got this working, Congratulations!!! %%======================================================================%% STEP 4: After verifying that your implementation of%  sparseAutoencoderCost is correct, You can start training your sparse%  autoencoder with minFunc (L-BFGS).%  Randomly initialize the parameterstheta = initializeParameters(hiddenSize, visibleSize);%  Use minFunc to minimize the functionaddpath minFunc/options.Method = ‘lbfgs‘; % Here, we use L-BFGS to optimize our cost                          % function. Generally, for minFunc to work, you                          % need a function pointer with two outputs: the                          % function value and the gradient. In our problem,                          % sparseAutoencoderCost.m satisfies this.options.maxIter = 400;      % Maximum number of iterations of L-BFGS to run options.display = ‘on‘;[opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...                                   visibleSize, hiddenSize, ...                                   lambda, sparsityParam, ...                                   beta, patches), ...                              theta, options);%%======================================================================%% STEP 5: Visualization W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);display_network(W1, 12); print -djpeg weights.jpg   % save the visualization to a file 

sampleIMAGES.m,进行图像采集

 

function patches = sampleIMAGES()% sampleIMAGES% Returns 10000 patches for trainingload IMAGES;    % load images from disk % figure;% imagesc(IMAGES(:,:,6));% colormap gray;patchsize = 8;  % we‘ll use 8x8 patches numpatches = 10000;% Initialize patches with zeros.  Your code will fill in this matrix--one% column per patch, 10000 columns. patches = zeros(patchsize*patchsize, numpatches);%% ---------- YOUR CODE HERE --------------------------------------%  Instructions: Fill in the variable called "patches" using data %  from IMAGES.  %  %  IMAGES is a 3D array containing 10 images%  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,%  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize%  it. (The contrast on these images look a bit off because they have%  been preprocessed using using "whitening."  See the lecture notes for%  more details.) As a second example, IMAGES(21:30,21:30,1) is an image%  patch corresponding to the pixels in the block (21,21) to (30,30) of%  Image 1[m,n] = size(IMAGES(:,:,1));for i = 1:10    image = IMAGES(:, :, i);    for j = 1:1000        row_id     = randi([1 (m - patchsize + 1)]);        column_id  = randi([1 (n - patchsize + 1)]);        patches(:,(i-1)*1000+j) = reshape(image(row_id:(row_id+patchsize-1), column_id:(column_id+patchsize-1)),...            patchsize*patchsize, 1);    endend%% ---------------------------------------------------------------% For the autoencoder to work well we need to normalize the data% Specifically, since the output of the network is bounded between [0,1]% (due to the sigmoid activation function), we have to make sure % the range of pixel values is also bounded between [0,1]patches = normalizeData(patches);end%% ---------------------------------------------------------------function patches = normalizeData(patches)% Squash data to [0.1, 0.9] since we use sigmoid as the activation% function in the output layer% Remove DC (mean of images). patches = bsxfun(@minus, patches, mean(patches));% Truncate to +/-3 standard deviations and scale to -1 to 1pstd = 3 * std(patches(:));patches = max(min(patches, pstd), -pstd) / pstd;% Rescale from [-1,1] to [0.1,0.9]patches = (patches + 1) * 0.4 + 0.1;end
function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...                                             lambda, sparsityParam, beta, data)% visibleSize: the number of input units (probably 64) % hiddenSize: the number of hidden units (probably 25) % lambda: weight decay parameter% sparsityParam: The desired average activation for the hidden units (denoted in the lecture%                           notes by the greek alphabet rho, which looks like a lower-case "p").% beta: weight of sparsity penalty term% data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example.   % The input theta is a vector (because minFunc expects the parameters to be a vector). % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this % follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);% Cost and gradient variables (your code needs to compute these values). % Here, we initialize them to zeros. cost = 0;W1grad = zeros(size(W1)); W2grad = zeros(size(W2));b1grad = zeros(size(b1)); b2grad = zeros(size(b2));%% ---------- YOUR CODE HERE --------------------------------------%  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,%                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.%% W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.% Note that W1grad has the same dimensions as W1, b1grad has the same dimensions% as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with% respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) % with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term % [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 % of the lecture notes (and similarly for W2grad, b1grad, b2grad).% % Stated differently, if we were using batch gradient descent to optimize the parameters,% the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. % Jcost = 0;   % 预测误差项Jweight = 0; % 权重衰减项Jsparse = 0; % 稀疏惩罚项   [n,m] = size(data); %m是样本个数,n是样本特征数%前向传播计算神经网络每个神经元的激活值Z2 = W1 * data + repmat(b1, 1, m); %b1扩展成1行m列,因为对每个样本的每个隐单元的激活值都要加上偏置项a2 = sigmoid(Z2);Z3 = W2 * a2 + repmat(b2, 1, m); a3 = sigmoid(Z3);%计算预测产生的误差项Jcost = (0.5 / m) * sum(sum((a3 - data).^2));%计算权重衰减项Jweight = 0.5 * (sum(sum(W1.^2)) + sum(sum(W2.^2)));%计算稀疏惩罚项rho = (1 / m) .* sum(a2, 2);Jsparse = sum(sparsityParam .* log(sparsityParam ./ rho) + ...        (1- sparsityParam) .* log((1- sparsityParam) ./ (1 - rho)));%代价函数cost = Jcost + lambda * Jweight + beta * Jsparse;%反向传播求出每个节点的误差d3 = -(data - a3) .* (sigmoid(Z3) .* (1 - sigmoid(Z3)));%注意sigmoid函数的求导f(1-f)sparseterm = beta * (-sparsityParam ./ rho + ...            (1- sparsityParam) ./ (1 - rho)); %稀疏项导数d2 = (W2‘ * d3 + repmat(sparseterm,1,m)).*(sigmoid(Z2) .* (1 - sigmoid(Z2)));%计算W1gradW1grad = W1grad + d2 * data;W1grad = (1/m) * W1grad + lambda * W1;%计算W2grad  W2grad = W2grad+d3*a2‘;W2grad = (1/m) * W2grad + lambda * W2;%计算b1grad b1grad = b1grad+sum(d2,2);b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来%计算b2grad b2grad = b2grad+sum(d3,2);b2grad = (1/m)*b2grad;%-------------------------------------------------------------------% After computing the cost and gradient, we will convert the gradients back% to a vector format (suitable for minFunc).  Specifically, we will unroll% your gradient matrices into a vector.grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];end%-------------------------------------------------------------------% Here‘s an implementation of the sigmoid function, which you may find useful% in your computation of the costs and the gradients.  This inputs a (row or% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x)      sigm = 1 ./ (1 + exp(-x));end

 

function numgrad = computeNumericalGradient(J, theta)% numgrad = computeNumericalGradient(J, theta)% theta: a vector of parameters% J: a function that outputs a real-number. Calling y = J(theta) will return the% function value at theta.   % Initialize numgrad with zerosnumgrad = zeros(size(theta));%% ---------- YOUR CODE HERE --------------------------------------% Instructions: % Implement numerical gradient checking, and return the result in numgrad.  % (See Section 2.3 of the lecture notes.)% You should write code so that numgrad(i) is (the numerical approximation to) the % partial derivative of J with respect to the i-th input argument, evaluated at theta.  % I.e., numgrad(i) should be the (approximately) the partial derivative of J with % respect to theta(i).%                % Hint: You will probably want to compute the elements of numgrad one at a time. epsilon = 1e-4;n = size(theta,1);E = eye(n);for i = 1:n    delta = E(:,i)*epsilon;    numgrad(i) = (J(theta+delta)-J(theta-delta))/(epsilon*2.0);end%% ---------------------------------------------------------------end
function [] = checkNumericalGradient()% This code can be used to check your numerical gradient implementation % in computeNumericalGradient.m% It analytically evaluates the gradient of a very simple function called% simpleQuadraticFunction (see below) and compares the result with your numerical% solution. Your numerical gradient implementation is incorrect if% your numerical solution deviates too much from the analytical solution.  % Evaluate the function and gradient at x = [4; 10]; (Here, x is a 2d vector.)x = [4; 10];[value, grad] = simpleQuadraticFunction(x);% Use your code to numerically compute the gradient of simpleQuadraticFunction at x.% (The notation "@simpleQuadraticFunction" denotes a pointer to a function.)numgrad = computeNumericalGradient(@simpleQuadraticFunction, x);% Visually examine the two gradient computations.  The two columns% you get should be very similar. disp([numgrad grad]);fprintf(‘The above two columns you get should be very similar.\n(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n‘);% Evaluate the norm of the difference between two solutions.  % If you have a correct implementation, and assuming you used EPSILON = 0.0001 % in computeNumericalGradient.m, then diff below should be 2.1452e-12 diff = norm(numgrad-grad)/norm(numgrad+grad);disp(diff); fprintf(‘Norm of the difference between numerical and analytical gradient (should be < 1e-9)\n\n‘);end  function [value,grad] = simpleQuadraticFunction(x)% this function accepts a 2D vector as input. % Its outputs are:%   value: h(x1, x2) = x1^2 + 3*x1*x2%   grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2 % Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we‘re assuming% that computeNumericalGradients will use only the first returned value of this function.value = http://www.mamicode.com/x(1)^2 + 3*x(1)*x(2);>

 

function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor)% This function visualizes filters in matrix A. Each column of A is a% filter. We will reshape each column into a square image and visualizes% on each cell of the visualization panel. % All other parameters are optional, usually you do not need to worry% about it.% opt_normalize: whether we need to normalize the filter so that all of% them can have similar contrast. Default value is true.% opt_graycolor: whether we use gray as the heat map. Default is true.% cols: how many columns are there in the display. Default value is the% squareroot of the number of columns in A.% opt_colmajor: you can switch convention to row major for A. In that% case, each row of A is a filter. Default value is false.warning off allif ~exist(‘opt_normalize‘, ‘var‘) || isempty(opt_normalize)    opt_normalize= true;endif ~exist(‘opt_graycolor‘, ‘var‘) || isempty(opt_graycolor)    opt_graycolor= true;endif ~exist(‘opt_colmajor‘, ‘var‘) || isempty(opt_colmajor)    opt_colmajor = false;end% rescaleA = A - mean(A(:));if opt_graycolor, colormap(gray); end% compute rows, cols[L M]=size(A);sz=sqrt(L);buf=1;if ~exist(‘cols‘, ‘var‘)    if floor(sqrt(M))^2 ~= M        n=ceil(sqrt(M));        while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end        m=ceil(M/n);    else        n=sqrt(M);        m=n;    endelse    n = cols;    m = ceil(M/n);endarray=-ones(buf+m*(sz+buf),buf+n*(sz+buf));if ~opt_graycolor    array = 0.1.* array;endif ~opt_colmajor    k=1;    for i=1:m        for j=1:n            if k>M,                 continue;             end            clim=max(abs(A(:,k)));            if opt_normalize                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;            else                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:)));            end            k=k+1;        end    endelse    k=1;    for j=1:n        for i=1:m            if k>M,                 continue;             end            clim=max(abs(A(:,k)));            if opt_normalize                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;            else                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz);            end            k=k+1;        end    endendif opt_graycolor    h=imagesc(array,‘EraseMode‘,‘none‘,[-1 1]);else    h=imagesc(array,‘EraseMode‘,‘none‘,[-1 1]);endaxis image offdrawnow;warning on all

 

进行梯度检验,两种不同的方式计算出的梯度相差 7.2299e-11,远小于1e-9.

随机展示出所有采样图像中的200幅:

本程序主要耗时间的地方是梯度检验,大约4-5分钟.

最终学习出的权重可视化结果如下:

 

 

 

 

 

 

 

 

 

 

 

稀疏自动编码之练习