首页 > 代码库 > 线程池ThreadPoolExecutor

线程池ThreadPoolExecutor

线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为:

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)
corePoolSize: 线程池维护线程的最少数量
maximumPoolSize:线程池维护线程的最大数量
keepAliveTime: 线程池维护线程所允许的空闲时间
unit: 线程池维护线程所允许的空闲时间的单位
workQueue: 线程池所使用的缓冲队列
handler: 线程池对拒绝任务的处理策略

一个任务通过 execute(Runnable)方法被添加到线程池,任务就是一个 Runnable类型的对象,任务的执行方法就是 Runnable类型对象的run()方法。

当一个任务通过execute(Runnable)方法欲添加到线程池时:

如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。
如果此时线程池中的数量等于 corePoolSize,但是缓冲队列 workQueue未满,那么任务被放入缓冲队列。
如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量小于maximumPoolSize,建新的线程来处理被添加的任务。
如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。

也就是:处理任务的优先级为:
核心线程corePoolSize、任务队列workQueue、最大线程maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。

当线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。

unit可选的参数为java.util.concurrent.TimeUnit中的几个静态属性:
NANOSECONDS、MICROSECONDS、MILLISECONDS、SECONDS。

workQueue我常用的是:java.util.concurrent.ArrayBlockingQueue

handler有四个选择:
ThreadPoolExecutor.AbortPolicy()
抛出java.util.concurrent.RejectedExecutionException异常
ThreadPoolExecutor.CallerRunsPolicy()
重试添加当前的任务,他会自动重复调用execute()方法
ThreadPoolExecutor.DiscardOldestPolicy()
抛弃旧的任务
ThreadPoolExecutor.DiscardPolicy()
抛弃当前的任务

package demo;import java.io.Serializable;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.ThreadPoolExecutor;import java.util.concurrent.TimeUnit;public class TestThreadPool2{    private static int produceTaskSleepTime = 2;    private static int produceTaskMaxNumber = 10;    public static void main(String[] args)    {        // 构造一个线程池        ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 4, 3, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(3),                new ThreadPoolExecutor.DiscardOldestPolicy());        for (int i = 1; i <= produceTaskMaxNumber; i++)        {            try            {                // 产生一个任务,并将其加入到线程池                String task = "task@ " + i;                System.out.println("put " + task);                threadPool.execute(new ThreadPoolTask(task));                // 便于观察,等待一段时间                Thread.sleep(produceTaskSleepTime);            }            catch (Exception e)            {                e.printStackTrace();            }        }    }}/** * 线程池执行的任务 */class ThreadPoolTask implements Runnable, Serializable{    private static final long serialVersionUID = 0;    private static int consumeTaskSleepTime = 2000;    // 保存任务所需要的数据    private Object threadPoolTaskData;    ThreadPoolTask(Object tasks)    {        this.threadPoolTaskData =http://www.mamicode.com/ tasks;    }    public void run()    {        // 处理一个任务,这里的处理方式太简单了,仅仅是一个打印语句        System.out.println(Thread.currentThread().getName());        System.out.println("start .." + threadPoolTaskData);        try        {            // //便于观察,等待一段时间            Thread.sleep(consumeTaskSleepTime);        }        catch (Exception e)        {            e.printStackTrace();        }        threadPoolTaskData = null;    }    public Object getTask()    {        return this.threadPoolTaskData;    }}

说明:
1、在这段程序中,一个任务就是一个Runnable类型的对象,也就是一个ThreadPoolTask类型的对象。 
2、一般来说任务除了处理方式外,还需要处理的数据,处理的数据通过构造方法传给任务。
3、在这段程序中,main()方法相当于一个残忍的领导,他派发出许多任务,丢给一个叫 threadPool的任劳任怨的小组来做。
这个小组里面队员至少有两个,如果他们两个忙不过来,任务就被放到任务列表里面。
如果积压的任务过多,多到任务列表都装不下(超过3个)的时候,就雇佣新的队员来帮忙。但是基于成本的考虑,不能雇佣太多的队员,至多只能雇佣 4个。
如果四个队员都在忙时,再有新的任务,这个小组就处理不了了,任务就会被通过一种策略来处理,我们的处理方式是不停的派发,直到接受这个任务为止(更残忍!呵呵)。
因为队员工作是需要成本的,如果工作很闲,闲到 3SECONDS都没有新的任务了,那么有的队员就会被解雇了,但是,为了小组的正常运转,即使工作再闲,小组的队员也不能少于两个。
4、通过调整 produceTaskSleepTime和 consumeTaskSleepTime的大小来实现对派发任务和处理任务的速度的控制,改变这两个值就可以观察不同速率下程序的工作情况。
5、通过调整4中所指的数据,再加上调整任务丢弃策略,换上其他三种策略,就可以看出不同策略下的不同处理方式。

原文:http://coach.iteye.com/blog/855850

线程池ThreadPoolExecutor