首页 > 代码库 > UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!

UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!

这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了。

题意:

这是完全独立的6个子问题。代码中是根据字符串的长度来区分问题编号的。

  1. 给出三角形三点坐标,求外接圆圆心和半径。
  2. 给出三角形三点坐标,求内切圆圆心和半径。
  3. 给出一个圆和一个定点,求过定点作圆的所有切线的倾角(0≤a<180°)
  4. 给出一个点和一条直线,求一个半径为r的过该点且与该直线相切的圆。
  5. 给出两条相交直线,求所有半径为r且与两直线都相切的圆。
  6. 给出两个相离的圆,求半径为r且与两圆都相切的圆。

分析:

  1. 写出三角形两边的垂直平分线的一般方程(注意去掉分母,避免直线是水平或垂直的特殊情况),然后联立求解即可。
  2. 有一个很简洁的三角形内心坐标公式(证明有点复杂,可用向量来证,其中多次用到角平分线定理),公式详见代码。
  3. 分点在圆内,圆上,圆外三种情况,注意最终结果的范围。
  4. 到定点距离为r的轨迹是个圆,与直线相切的圆心的轨迹是两条平行直线。最终转化为求圆与两条平行线的交点。
  5. 我开始用的方法是求出圆心到两直线交点的距离,以及与其中一条直线的夹角,依次旋转三个90°即可得到另外三个点。但是对比正确结果,误差居然达到了个位(如果代码没有错的话)!后来参考了lrj的思路,就是讲两直线分别向两侧平移r距离,这样得到的四条直线两两相交得到的四个交点就是所求。
  6. 看起来有点复杂,仔细分析,半径为r与圆外切的圆心的轨迹还是个圆。因此问题转化为求半径扩大以后的两圆的交点。

体会:

  • (Point)(x, y)是强制类型转换,Point(x, y)才是调用构造函数。前者只会将x的值复制,y的值则是默认值0.
  • 计算的中间步骤越多,误差越大,最好能优化算法,或者调整EPS的大小。

 

  1 //#define LOCAL  2 #include <cstdio>  3 #include <cstring>  4 #include <string>  5 #include <algorithm>  6 #include <cmath>  7 #include <vector>  8 using namespace std;  9  10 struct Point 11 { 12     double x, y; 13     Point(double xx=0, double yy=0) :x(xx),y(yy) {} 14 }; 15 typedef Point Vector; 16  17 Point read_point(void) 18 { 19     double x, y; 20     scanf("%lf%lf", &x, &y); 21     return Point(x, y); 22 } 23  24 const double EPS = 1e-7; 25 const double PI = acos(-1.0); 26  27 Vector operator + (Vector A, Vector B)    { return Vector(A.x + B.x, A.y + B.y); } 28  29 Vector operator - (Vector A, Vector B)    { return Vector(A.x - B.x, A.y - B.y); } 30  31 Vector operator * (Vector A, double p)    { return Vector(A.x*p, A.y*p); } 32  33 Vector operator / (Vector A, double p)    { return Vector(A.x/p, A.y/p); } 34  35 bool operator < (const Point& a, const Point& b) 36 { return a.x < b.x || (a.x == b.x && a.y < b.y); } 37  38 int dcmp(double x) 39 { if(fabs(x) < EPS) return 0; else return x < 0 ? -1 : 1; } 40  41 bool operator == (const Point& a, const Point& b) 42 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 43  44 double Dot(Vector A, Vector B) 45 { return A.x*B.x + A.y*B.y; } 46  47 double Length(Vector A)    { return sqrt(Dot(A, A)); } 48  49 double Angle(Vector A, Vector B) 50 { return acos(Dot(A, B) / Length(A) / Length(B)); } 51  52 double Angle2(Vector A)    { return atan2(A.y, A.x); } 53  54 Vector VRotate(Vector A, double rad) 55 { 56     return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); 57 } 58  59 Vector Normal(Vector A) 60 { 61     double l = Length(A); 62     return Vector(-A.y/l, A.x/l); 63 } 64  65 double Change(double r)    { return r / PI * 180.0; } 66  67 double Cross(Vector A, Vector B) 68 { return A.x*B.y - A.y*B.x; } 69  70 struct Circle 71 { 72     double x, y, r; 73     Circle(double x=0, double y=0, double r=0):x(x), y(y), r(r) {} 74     Point point(double a) 75     { 76         return Point(x+r*cos(a), y+r*sin(a)); 77     } 78 }; 79  80 const int maxn = 1010; 81 char s[maxn]; 82  83 int ID(char* s) 84 { 85     int l = strlen(s); 86     switch(l) 87     { 88         case 19: return 0; 89         case 15: return 1; 90         case 23: return 2; 91         case 46: return 3; 92         case 33: return 4; 93         case 43: return 5; 94         default: return -1; 95     } 96 } 97  98 void Solve(double A1, double B1, double C1, double A2, double B2, double C2, double& ansx, double& ansy) 99 {100     ansx = (B1*C2 - B2*C1) / (A1*B2 - A2*B1);101     ansy = (C2*A1 - C1*A2) / (B1*A2 - B2*A1);    102 }103 104 void problem0()105 {106     Point A, B, C;107     scanf("%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y);108     double A1 = B.x-A.x, B1 = B.y-A.y, C1 = (A.x*A.x-B.x*B.x+A.y*A.y-B.y*B.y)/2;109     double A2 = C.x-A.x, B2 = C.y-A.y, C2 = (A.x*A.x-C.x*C.x+A.y*A.y-C.y*C.y)/2;110     Point ans;111     Solve(A1, B1, C1, A2, B2, C2, ans.x, ans.y);112     double r = Length(ans - A);113     printf("(%.6lf,%.6lf,%.6lf)\n", ans.x, ans.y, r);114 }115 116 void problem1()117 {118     Point A, B, C;119     scanf("%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y);120     double a = Length(B-C), b = Length(A-C), c = Length(A-B);121     double l = a+b+c;122     Point ans = (A*a+B*b+C*c)/l;123     double r = fabs(Cross(A-B, C-B)) / l;124     printf("(%.6lf,%.6lf,%.6lf)\n", ans.x, ans.y, r);125 }126 127 void problem2()128 {129     Circle C;130     Point P, O;131     scanf("%lf%lf%lf%lf%lf", &C.x, &C.y, &C.r, &P.x, &P.y);132     double ans[2];133     O.x = C.x, O.y = C.y;134     double d = Length(P-O);135     int k = dcmp(d-C.r);136     if(k < 0)137     {138         printf("[]\n");139         return;140     }141     else if(k == 0)142     {143         ans[0] = Change(Angle2(P-O)) + 90.0;144         while(ans[0] >= 180.0)    ans[0] -= 180.0;145         while(ans[0] < 0)        ans[0] += 180.0;146         printf("[%.6lf]\n", ans[0]);147         return;148     }149     else150     {151         double ag = asin(C.r/d);152         double base = Angle2(P-O);153         ans[0] = base + ag, ans[1] = base - ag;154         ans[0] = Change(ans[0]), ans[1] = Change(ans[1]);155         while(ans[0] >= 180.0)    ans[0] -= 180.0;156         while(ans[0] < 0)        ans[0] += 180.0;157         while(ans[1] >= 180.0)    ans[1] -= 180.0;158         while(ans[1] < 0)        ans[1] += 180.0;159         if(ans[0] >= ans[1])    swap(ans[0], ans[1]);160         printf("[%.6lf,%.6lf]\n", ans[0], ans[1]);161     }162 }163 164 vector<Point> sol;165 struct Line166 {167     Point p;168     Vector v;169     Line()    { }170     Line(Point p, Vector v): p(p), v(v)    {}171     Point point(double t)172     {173         return p + v*t;174     }175     Line move(double d)176     {177         return Line(p + Normal(v)*d, v);178     }179 };180 Point GetIntersection(Line a, Line b)181 {182     Vector u = a.p - b.p;183     double t = Cross(b.v, u) / Cross(a.v, b.v);184     return a.p + a.v*t;185 }186 struct Circle2187 {188     Point c;    //圆心189     double r;    //�径190     Point point(double a)191     {192         return Point(c.x+r*cos(a), c.y+r*sin(a));193     }194 };195 //两圆相交并返�交点个数 196 int getLineCircleIntersection(Line L, Circle2 C, vector<Point>& sol)197 {198     double t1, t2;199     double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;200     double e = a*a + c*c, f = 2*(a*b + c*d), g = b*b + d*d - C.r*C.r;201     double delta = f*f - 4*e*g;        //判别�202     if(dcmp(delta) < 0)    return 0;    //相离203     if(dcmp(delta) == 0)            //相切204     {205         t1 = t2 = -f / (2 * e);206         sol.push_back(L.point(t1));207         return 1;208     }209     //相交210     t1 = (-f - sqrt(delta)) / (2 * e);    sol.push_back(L.point(t1));211     t2 = (-f + sqrt(delta)) / (2 * e);    sol.push_back(L.point(t2));212     return 2;213 }214 void problem3()215 {216     Circle2 C;217     Point A, B;218     scanf("%lf%lf%lf%lf%lf%lf%lf", &C.c.x, &C.c.y, &A.x, &A.y, &B.x, &B.y, &C.r);219     Vector v = (A-B)/Length(A-B)*C.r;220     //printf("%lf\n", Length(v));221     Point p1 = A + Point(-v.y, v.x);222     Point p2 = A + Point(v.y, -v.x);223     //printf("%lf\n%lf", Length(p1-C.c), Length(p2-C.c));224     Line L1(p1, v), L2(p2, v);225     226     sol.clear();227     int cnt =  getLineCircleIntersection(L1, C, sol);228     cnt += getLineCircleIntersection(L2, C, sol);229     sort(sol.begin(), sol.end());230     if(cnt == 0)    { printf("[]\n"); return; }231     printf("[");232     for(int i = 0; i < cnt-1; ++i)    printf("(%.6lf,%.6lf),", sol[i].x, sol[i].y);233     printf("(%.6lf,%.6lf)]\n", sol[cnt-1].x, sol[cnt-1].y);234 }235 236 void problem4()237 {238     double r;239     Point A, B, C, D, E, ans[4];240     scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y, &D.x, &D.y, &r);241     Line a(A, B-A), b(C, D-C);242     Line L1 = a.move(r), L2 = a.move(-r);243     Line L3 = b.move(r), L4 = b.move(-r);244     ans[0] = GetIntersection(L1, L3);245     ans[1] = GetIntersection(L1, L4);246     ans[2] = GetIntersection(L2, L3);247     ans[3] = GetIntersection(L2, L4);248     sort(ans, ans+4);249     printf("[");250     for(int i = 0; i < 3; ++i)    printf("(%.6lf,%.6lf),", ans[i].x, ans[i].y);251     printf("(%.6lf,%.6lf)]\n", ans[3].x, ans[3].y);252 }253 254 int getCircleCircleIntersection(Circle2 C1, Circle2 C2, vector<Point>& sol)255 {256     double d = Length(C1.c - C2.c);257     if(dcmp(d) == 0)258     {259         if(dcmp(C1.r - C2.r) == 0)    return -1;260         return 0;261     }262     if(dcmp(C1.r + C2.r - d) < 0)    return 0;263     if(dcmp(fabs(C1.r - C2.r) - d) > 0)    return 0;264 265     double a = Angle2(C2.c - C1.c);266     double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d));267     Point p1 = C1.point(a+da), p2 = C1.point(a-da);268     sol.push_back(p1);269     if(p1 == p2)    return 1;270     sol.push_back(p2);271     return 2;272 }273 274 void problem5()275 {276     Circle2 C1, C2;277     double r;278     vector<Point> sol;279     scanf("%lf%lf%lf%lf%lf%lf%lf", &C1.c.x, &C1.c.y, &C1.r, &C2.c.x, &C2.c.y, &C2.r, &r);280     double d = Length(C1.c - C2.c);281     C1.r += r, C2.r += r;282     if(dcmp(C1.r+C2.r-d) < 0)    { printf("[]\n"); return; }283     int n = getCircleCircleIntersection(C1, C2, sol);284     sort(sol.begin(), sol.end());285     printf("[");286     for(int i = 0; i < n-1; ++i)    printf("(%.6lf,%.6lf),", sol[i].x, sol[i].y);287     printf("(%.6lf,%.6lf)]\n", sol[n-1].x, sol[n-1].y);288 }289 290 int main()291 {292     #ifdef    LOCAL293         freopen("12304in.txt", "r", stdin);294     #endif295 296     while(scanf("%s", s) == 1)297     {298         int proID = ID(s);299         switch(proID)300         {301             case 0:    problem0();    break;302             case 1:    problem1();    break;303             case 2:    problem2();    break;304             case 3:    problem3();    break;305             case 4:    problem4();    break;306             case 5:    problem5();    break;307             default: break;308         }309     }310     311     return 0;312 }
代码君

 

UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!