首页 > 代码库 > BestCoder Round #14
BestCoder Round #14
Harry And Physical Teacher
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 38 Accepted Submission(s): 34
Today, Harry‘s physical teacher set him a difficult problem: if a small ball moving with a speed
This problem was so difficult that Harry hasn‘t figure out how to solve it. Therefore, he asks you for help. Could you do him this favor?
There are two integers
0 10
-10
题意:
a,b两个球a的速度我va。b的速度为vb。va>vb.va,vb同向且a在b的后面。b的质量远大于a。
思路:
a肯定会撞b的。正规的思路应该是动量守恒。机械能守恒。然后blabla。我的思路是既然b的质量远大于a。那么b可以看做是一堵墙。而a撞墙的速度就是va-vb咯。由于弹性碰撞。撞墙后速度肯定是反向啦。所以速度就变为-(va-vb)
但是这个速度是相对墙的。所以转化为绝对速度就为-(va-vb)+vb。
详细见代码:
#include<algorithm> #include<iostream> #include<string.h> #include<stdio.h> using namespace std; const int INF=0x3f3f3f3f; const int maxn=100010; typedef long long ll; int main() { int v1,v2; while(~scanf("%d%d",&v1,&v2)) { printf("%d\n",2*v1-v2); } return 0; }
Harry And Dig Machine
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 170 Accepted Submission(s): 50
Dumbledore, the headmaster of Hogwarts, is planning to construct a new teaching building in his school. The area he selects can be considered as an n*m grid, some (but no more than ten) cells of which might contain stones. We should remove the stones there in order to save place for the teaching building. However, the stones might be useful, so we just move them to the top-left cell. Taking it into account that Harry learned how to operate dig machine in Lanxiang School several years ago, Dumbledore decides to let him do this job and wants it done as quickly as possible. Harry needs one unit time to move his dig machine from one cell to the adjacent one. Yet skilled as he is, it takes no time for him to move stones into or out of the dig machine, which is big enough to carry infinite stones. Given Harry and his dig machine at the top-left cell in the beginning, if he wants to optimize his work, what is the minimal time Harry needs to finish it?
For each test case, there are two integers n and m.
The next n line, each line contains m integer. The j-th number of
3 3 0 0 0 0 100 0 0 0 0 2 2 1 1 1 1
4 4
题意:
哈利珀特学挖掘机了。那么问题来了。。。。--||。一个n*m(50*50)的格子。一些格子数字大于0个数不超过10(看到这就懂了).你开始在左上角。然后你要经过所有这些数字大于0的格子然后回到左上角。然后问你最少需要多少步完成这个目标。每步可以往四个方向走一步。
思路:
由于数字大于0的格子不超过10所以可以壮压。这就是经典的TSP问题啦。先对特殊格子编号然后bfs计算两两特殊格子的距离(步数).然后就TSP了。dp[i][s]表示目前在i走到的格子状态为s。
详细见代码:
#include<algorithm> #include<iostream> #include<string.h> #include<stdio.h> #include<queue> using namespace std; const int INF=0x3f3f3f3f; const int maxn=100010; typedef long long ll; int maze[55][55],hs[55][55],vis[55][55]; int dp[13][1<<12],dis[15][15],base[15]; int sx[55],sy[55],cnt,n,m; int dx[]={0,-1,0,1}; int dy[]={-1,0,1,0}; struct node { int x,y,d; }; queue<node> q; void bfs(int id) { while(!q.empty()) q.pop(); node tt,nt; memset(vis,0,sizeof vis); tt.x=sx[id],tt.y=sy[id]; dis[id][id]=tt.d=0; vis[tt.x][tt.y]=1; q.push(tt); int nx,ny,i; while(!q.empty()) { tt=q.front(); q.pop(); for(i=0;i<4;i++) { nx=tt.x+dx[i]; ny=tt.y+dy[i]; if(nx>=1&&nx<=n&&ny>=1&&ny<=m&&!vis[nx][ny]) { vis[nx][ny]=1; nt.x=nx,nt.y=ny,nt.d=tt.d+1; if(hs[nx][ny]!=-1) dis[id][hs[nx][ny]]=nt.d; q.push(nt); } } } } int main() { int i,j,k,lim; base[0]=1; for(i=1;i<15;i++) base[i]=base[i-1]<<1; while(~scanf("%d%d",&n,&m)) { cnt=0; memset(hs,-1,sizeof hs); for(i=1;i<=n;i++) { for(j=1;j<=m;j++) { scanf("%d",&maze[i][j]); if(maze[i][j]||(i==1&&j==1)) { sx[cnt]=i,sy[cnt]=j; hs[i][j]=cnt++; } } } for(i=0;i<cnt;i++) bfs(i); memset(dp,0x3f,sizeof dp); dp[0][0]=0; lim=1<<cnt; for(i=0;i<lim;i++) { for(j=0;j<cnt;j++) { if(dp[j][i]==INF) continue; for(k=0;k<cnt;k++) { if(i&base[k]) continue; dp[k][i|base[k]]=min(dp[k][i|base[k]],dp[j][i]+dis[j][k]); } } } printf("%d\n",dp[0][lim-1]); } return 0; }
c题感觉细节有点麻烦。当时比赛没做(时间也不够了)。先占个坑。写了再贴上。
Harry And Biological Teacher
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 26 Accepted Submission(s): 2
Today, Harry is on his biological class, his teacher is doing experiment with DNA right now. But the clever teacher faces a difficult problem. He has lots of genes. Every time he picks gene a and gene b. If he want to connect gene a and gene b, he should calculate the length of longest part that the gene a’s suffix and gene b’s prefix can overlap together. For example gene a is "AAT" and gene b is "ATT", then the longest common part is "AT", so the answer is 2. And can you solve this difficult problem for him?
For each test case, there are two integers n and m (
The next following n line, each line contains a non-empty string composed by characters ‘A‘ , ‘T‘ , ‘C‘ , ‘G‘. The sum of all the characters is less than 100000.
Then the next following m line, each line contains two integers a and b(
2 1 ACCGT TTT 1 2 4 4 AAATTT TTTCCC CCCGGG GGGAAA 1 2 2 3 3 4 4 1
1 3 3 3 3
题意:
给你n个由A,G,C,T构成的字符串。n个字符串的总长度不超过1e5.然后m个询问。n,m<=1e5.每次询问a,b两个字符串。找到一个最长的串使得它是a的后缀。然后也是b的前缀。输出它的长度就行了。
思路:
第一想法就是后缀自动机。然后就开搞了。离线处理所有询问。把所有第一个串是a的b建个邻接表。然后依次处理每个a。先对a建后缀自动机。然后对于串b在自动机上匹配就是了。匹配的最大长度的可接受态就是答案。然后一A。甚欢。比赛结束后才发现忘了记忆化。就是对每个a链里的每一个b只需要跑一遍就行了。哎,可惜发现的太晚了。还是无情的T了。就上后再就200ms过了。。。真是冤死了。时间复杂度。由于顶多对n各字符串都建一次后缀自动机。然后每次询问最多也只能匹配a串那么长。所以复杂度为2*总串长。就O(n)咯。
详细见代码:
#include<algorithm> #include<iostream> #include<string.h> #include<stdio.h> #include<map> using namespace std; const int INF=0x3f3f3f3f; const int maxn=100010; typedef long long ll; char txt[maxn<<1]; int st[maxn],ans[maxn]; map<int,int> mp; struct node { node *f,*ch[30]; int len,ac; void init() { ac=0; memset(ch,0,sizeof ch); } }*root,*tail,sam[maxn<<1]; int tot,len,cnt; struct qnode { qnode *next; int v,id; } ed[maxn<<1],*head[maxn]; void adde(int u,int v,int id) { ed[cnt].v=v; ed[cnt].id=id; ed[cnt].next=head[u]; head[u]=&ed[cnt++]; } void init() { tot=0; root=tail=&sam[tot++]; root->init(); root->len=0; } void Insert(int c) { node *p=tail,*np=&sam[tot++]; np->init(),np->len=p->len+1; while(p&&!p->ch[c]) p->ch[c]=np,p=p->f; tail=np; if(!p) np->f=root; else { if(p->ch[c]->len==p->len+1) np->f=p->ch[c]; else { node *q=p->ch[c],*nq=&sam[tot++]; *nq=*q; nq->len=p->len+1; q->f=np->f=nq; while(p&&p->ch[c]==q) p->ch[c]=nq,p=p->f; } } } int main() { int i,j,n,m,len,tl,u,v; while(~scanf("%d%d",&n,&m)) { len=cnt=0; for(i=1;i<=n;i++) { st[i]=len; scanf("%s",txt+len); tl=strlen(txt+len); len=len+tl+1; } memset(head,0,sizeof head); for(i=1;i<=m;i++) { scanf("%d%d",&u,&v); adde(u,v,i); } for(i=1;i<=n;i++) { init(); for(j=st[i];txt[j];j++) Insert(txt[j]-'A'); for(node *p=tail;p!=NULL;p=p->f) p->ac=1; mp.clear(); for(qnode *q=head[i];q!=NULL;q=q->next) { if(mp.count(q->v)) { ans[q->id]=mp[q->v]; continue; } node *p=root; int ct=0,aa=0; for(j=st[q->v];txt[j];j++) if(p->ch[txt[j]-'A']!=NULL) { ct++,p=p->ch[txt[j]-'A']; if(p->ac) aa=max(aa,ct); } else break; ans[q->id]=aa; mp[q->v]=aa; } } for(i=1;i<=m;i++) printf("%d\n",ans[i]); } return 0; }
BestCoder Round #14