首页 > 代码库 > 大数据时代之hadoop(二):hadoop脚本解析
大数据时代之hadoop(二):hadoop脚本解析
大数据时代之hadoop(一):hadoop安装
“兵马未动,粮草先行”,要想深入的了解hadoop,我觉得启动或停止hadoop的脚本是必须要先了解的。说到底,hadoop就是一个分布式存储和计算框架,但是这个分布式环境是如何启动,管理的呢,我就带着大家先从脚本入手吧。说实话,hadoop的启动脚本写的真好,里面考虑的地方非常周全(比如说路径中有空格,软连接等)。
1、hadoop脚本简单介绍
hadoop的脚本分布在$HADOOP_HOME下面的bin目录下和conf文件夹下,主要介绍如下:
bin目录下
hadoop hadoop底层核心脚本,所有分布式程序最终都是通过这个脚本启动的。
hadoop-config.sh 基本别的脚本都会内嵌调用这个脚本,这个脚本作用就是解析命令行可选参数(--config :hadoop conf文件夹路径 和--hosts)
hadoop-daemon.sh 启动或停止本机command参数所指定的分布式程序,通过调用hadoop脚本实现。
hadoop-daemons.sh 启动所有机器上的hadoop分布式程序,通过调用slaves.sh实现。
slaves.sh 在所有的机器上运行一组指定的命令(通过ssh无密码登陆),供上层使用。
start-dfs.sh 在本机启动namenode,在slaves机器上启动datanode,在master机器上启动secondarynamenode,通过调用hadoop-daemon.sh和hadoop-daemons.sh实现。
start-mapred.sh 在本机启动jobtracker,在slaves机器上启动tasktracker,通过调用hadoop-daemon.sh和hadoop-daemons.sh实现。
start-all.sh 启动所有分布式hadoop程序,通过调用start-dfs.sh和start-mapred.sh实现。
start-balancer.sh 启动hadoop分布式环境复杂均衡调度程序,平衡各节点存储和处理能力。
还有几个stop 脚本,就不用详细说了。
conf目录下
hadoop-env.sh 配置hadoop运行时所需要的一些参数变量,比如JAVA_HOME,HADOOP_LOG_DIR,HADOOP_PID_DIR等。
2、脚本的魅力(详细解释)
2.1、hadoop-config.sh
这个脚本主要做三部分内容:
#软连接解析this="$0"while [ -h "$this" ]; do ls=`ls -ld "$this"` link=`expr "$ls" : ‘.*-> \(.*\)$‘` if expr "$link" : ‘.*/.*‘ > /dev/null; then this="$link" else this=`dirname "$this"`/"$link" fidone#绝对路径解析# convert relative path to absolute pathbin=`dirname "$this"`script=`basename "$this"`bin=`cd "$bin"; pwd`this="$bin/$script"# the root of the Hadoop installationexport HADOOP_HOME=`dirname "$this"`/..
2、命令行可选参数--config解析并赋值
#check to see if the conf dir is given as an optional argumentif [ $# -gt 1 ]then if [ "--config" = "$1" ] then shift confdir=$1 shift HADOOP_CONF_DIR=$confdir fifi
3、命令行可选参数--config解析并赋值
#check to see it is specified whether to use the slaves or the# masters fileif [ $# -gt 1 ]then if [ "--hosts" = "$1" ] then shift slavesfile=$1 shift export HADOOP_SLAVES="${HADOOP_CONF_DIR}/$slavesfile" fifi
2.2、hadoop
# if no args specified, show usageif [ $# = 0 ]; then echo "Usage: hadoop [--config confdir] COMMAND" echo "where COMMAND is one of:" echo " namenode -format format the DFS filesystem" echo " secondarynamenode run the DFS secondary namenode" echo " namenode run the DFS namenode" echo " datanode run a DFS datanode" echo " dfsadmin run a DFS admin client" echo " mradmin run a Map-Reduce admin client" echo " fsck run a DFS filesystem checking utility" echo " fs run a generic filesystem user client" echo " balancer run a cluster balancing utility" echo " jobtracker run the MapReduce job Tracker node" echo " pipes run a Pipes job" echo " tasktracker run a MapReduce task Tracker node" echo " job manipulate MapReduce jobs" echo " queue get information regarding JobQueues" echo " version print the version" echo " jar <jar> run a jar file" echo " distcp <srcurl> <desturl> copy file or directories recursively" echo " archive -archiveName NAME <src>* <dest> create a hadoop archive" echo " daemonlog get/set the log level for each daemon" echo " or" echo " CLASSNAME run the class named CLASSNAME" echo "Most commands print help when invoked w/o parameters." exit 1fi
2、设置java运行环境
代码简单,就不写出来了,包括JAVA_HOME,JAVA_HEAP_MAX,CLASSPATH,HADOOP_LOG_DIR,HADOOP_POLICYFILE。其中用到了设置IFS-储界定符号的环境变量,默认值是空白字符(换行,制表符或者空格)。
3、根据cmd设置运行时class
# figure out which class to runif [ "$COMMAND" = "namenode" ] ; then CLASS=‘org.apache.hadoop.hdfs.server.namenode.NameNode‘ HADOOP_OPTS="$HADOOP_OPTS $HADOOP_NAMENODE_OPTS"elif [ "$COMMAND" = "secondarynamenode" ] ; then CLASS=‘org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode‘ HADOOP_OPTS="$HADOOP_OPTS $HADOOP_SECONDARYNAMENODE_OPTS"elif [ "$COMMAND" = "datanode" ] ; then CLASS=‘org.apache.hadoop.hdfs.server.datanode.DataNode‘ HADOOP_OPTS="$HADOOP_OPTS $HADOOP_DATANODE_OPTS"elif [ "$COMMAND" = "fs" ] ; then CLASS=org.apache.hadoop.fs.FsShell HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "dfs" ] ; then CLASS=org.apache.hadoop.fs.FsShell HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "dfsadmin" ] ; then CLASS=org.apache.hadoop.hdfs.tools.DFSAdmin HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "mradmin" ] ; then CLASS=org.apache.hadoop.mapred.tools.MRAdmin HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "fsck" ] ; then CLASS=org.apache.hadoop.hdfs.tools.DFSck HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "balancer" ] ; then CLASS=org.apache.hadoop.hdfs.server.balancer.Balancer HADOOP_OPTS="$HADOOP_OPTS $HADOOP_BALANCER_OPTS"elif [ "$COMMAND" = "jobtracker" ] ; then CLASS=org.apache.hadoop.mapred.JobTracker HADOOP_OPTS="$HADOOP_OPTS $HADOOP_JOBTRACKER_OPTS"elif [ "$COMMAND" = "tasktracker" ] ; then CLASS=org.apache.hadoop.mapred.TaskTracker HADOOP_OPTS="$HADOOP_OPTS $HADOOP_TASKTRACKER_OPTS"elif [ "$COMMAND" = "job" ] ; then CLASS=org.apache.hadoop.mapred.JobClientelif [ "$COMMAND" = "queue" ] ; then CLASS=org.apache.hadoop.mapred.JobQueueClientelif [ "$COMMAND" = "pipes" ] ; then CLASS=org.apache.hadoop.mapred.pipes.Submitter HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "version" ] ; then CLASS=org.apache.hadoop.util.VersionInfo HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "jar" ] ; then CLASS=org.apache.hadoop.util.RunJarelif [ "$COMMAND" = "distcp" ] ; then CLASS=org.apache.hadoop.tools.DistCp CLASSPATH=${CLASSPATH}:${TOOL_PATH} HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "daemonlog" ] ; then CLASS=org.apache.hadoop.log.LogLevel HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "archive" ] ; then CLASS=org.apache.hadoop.tools.HadoopArchives CLASSPATH=${CLASSPATH}:${TOOL_PATH} HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"elif [ "$COMMAND" = "sampler" ] ; then CLASS=org.apache.hadoop.mapred.lib.InputSampler HADOOP_OPTS="$HADOOP_OPTS $HADOOP_CLIENT_OPTS"else CLASS=$COMMANDfi
4、设置本地库
# setup ‘java.library.path‘ for native-hadoop code if necessaryJAVA_LIBRARY_PATH=‘‘if [ -d "${HADOOP_HOME}/build/native" -o -d "${HADOOP_HOME}/lib/native" ]; then#通过运行一个java 类来决定当前平台,挺有意思 JAVA_PLATFORM=`CLASSPATH=${CLASSPATH} ${JAVA} -Xmx32m org.apache.hadoop.util.PlatformName | sed -e "s/ /_/g"` if [ -d "$HADOOP_HOME/build/native" ]; then JAVA_LIBRARY_PATH=${HADOOP_HOME}/build/native/${JAVA_PLATFORM}/lib fi if [ -d "${HADOOP_HOME}/lib/native" ]; then if [ "x$JAVA_LIBRARY_PATH" != "x" ]; then JAVA_LIBRARY_PATH=${JAVA_LIBRARY_PATH}:${HADOOP_HOME}/lib/native/${JAVA_PLATFORM} else JAVA_LIBRARY_PATH=${HADOOP_HOME}/lib/native/${JAVA_PLATFORM} fi fifi
5、运行分布式程序
# run itexec "$JAVA" $JAVA_HEAP_MAX $HADOOP_OPTS -classpath "$CLASSPATH" $CLASS "$@"
2.3、hadoop-daemon.sh
启动或停止本机command参数所指定的分布式程序,通过调用hadoop脚本实现,其实也挺简单的。1、声明使用方法
usage="Usage: hadoop-daemon.sh [--config <conf-dir>] [--hosts hostlistfile] (start|stop) <hadoop-command> <args...>"# if no args specified, show usageif [ $# -le 1 ]; then echo $usage exit 1fi
2、设置环境变量
首先内嵌运行hadoop-env.sh脚本,然后设置HADOOP_PID_DIR等环境变量。
3、启动或停止程序
case $startStop in (start) mkdir -p "$HADOOP_PID_DIR" if [ -f $pid ]; then #如果程序已经启动的话,就停止,并退出。 if kill -0 `cat $pid` > /dev/null 2>&1; then echo $command running as process `cat $pid`. Stop it first. exit 1 fi fi if [ "$HADOOP_MASTER" != "" ]; then echo rsync from $HADOOP_MASTER rsync -a -e ssh --delete --exclude=.svn --exclude=‘logs/*‘ --exclude=‘contrib/hod/logs/*‘ $HADOOP_MASTER/ "$HADOOP_HOME" fi# rotate 当前已经存在的log hadoop_rotate_log $log echo starting $command, logging to $log cd "$HADOOP_HOME" #通过nohup 和bin/hadoop脚本启动相关程序 nohup nice -n $HADOOP_NICENESS "$HADOOP_HOME"/bin/hadoop --config $HADOOP_CONF_DIR $command "$@" > "$log" 2>&1 < /dev/null & #获取新启动的进程pid并写入到pid文件中 echo $! > $pid sleep 1; head "$log" ;; (stop) if [ -f $pid ]; then if kill -0 `cat $pid` > /dev/null 2>&1; then echo stopping $command kill `cat $pid` else echo no $command to stop fi else echo no $command to stop fi ;; (*) echo $usage exit 1 ;;esac
2.4、slaves.sh
在所有的机器上运行一组指定的命令(通过ssh无密码登陆),供上层使用。
1、声明使用方法
usage="Usage: slaves.sh [--config confdir] command..."# if no args specified, show usageif [ $# -le 0 ]; then echo $usage exit 1fi
2、设置远程主机列表
# If the slaves file is specified in the command line,# then it takes precedence over the definition in # hadoop-env.sh. Save it here.HOSTLIST=$HADOOP_SLAVESif [ -f "${HADOOP_CONF_DIR}/hadoop-env.sh" ]; then . "${HADOOP_CONF_DIR}/hadoop-env.sh"fiif [ "$HOSTLIST" = "" ]; then if [ "$HADOOP_SLAVES" = "" ]; then export HOSTLIST="${HADOOP_CONF_DIR}/slaves" else export HOSTLIST="${HADOOP_SLAVES}" fifi
3、分别在远程主机执行相关命令
#挺重要,里面技术含量也挺高,对远程主机文件进行去除特殊字符和删除空行;对命令行进行空格替换,并通过ssh在目标主机执行命令;最后等待命令在所有目标主机执行完后,退出。for slave in `cat "$HOSTLIST"|sed "s/#.*$//;/^$/d"`; do ssh $HADOOP_SSH_OPTS $slave $"${@// /\\ }" 2>&1 | sed "s/^/$slave: /" & if [ "$HADOOP_SLAVE_SLEEP" != "" ]; then sleep $HADOOP_SLAVE_SLEEP fidonewait
2.5、hadoop-daemons.sh
1、声明使用方法
# Run a Hadoop command on all slave hosts.usage="Usage: hadoop-daemons.sh [--config confdir] [--hosts hostlistfile] [start|stop] command args..."# if no args specified, show usageif [ $# -le 1 ]; then echo $usage exit 1fi
2、在远程主机调用命令
#通过salves.sh来实现 exec "$bin/slaves.sh" --config $HADOOP_CONF_DIR cd "$HADOOP_HOME" \; "$bin/hadoop-daemon.sh" --config $HADOOP_CONF_DIR "$@"
2.6、start-dfs.sh
在本机(调用此脚本的主机)启动namenode,在slaves机器上启动datanode,在master机器上启动secondarynamenode,通过调用hadoop-daemon.sh和hadoop-daemons.sh实现。
1、声明使用方式
# Start hadoop dfs daemons.# Optinally upgrade or rollback dfs state.# Run this on master node.usage="Usage: start-dfs.sh [-upgrade|-rollback]"
2、启动程序
# start dfs daemons# start namenode after datanodes, to minimize time namenode is up w/o data# note: datanodes will log connection errors until namenode starts#在本机(调用此脚本的主机)启动namenode"$bin"/hadoop-daemon.sh --config $HADOOP_CONF_DIR start namenode $nameStartOpt#在slaves机器上启动datanode"$bin"/hadoop-daemons.sh --config $HADOOP_CONF_DIR start datanode $dataStartOpt#在master机器上启动secondarynamenode"$bin"/hadoop-daemons.sh --config $HADOOP_CONF_DIR --hosts masters start secondarynamenode
2.7、start-mapred.sh
# start mapred daemons# start jobtracker first to minimize connection errors at startup#在本机(调用此脚本的主机)启动jobtracker"$bin"/hadoop-daemon.sh --config $HADOOP_CONF_DIR start jobtracker#在master机器上启动tasktracker"$bin"/hadoop-daemons.sh --config $HADOOP_CONF_DIR start tasktracker
其他的脚本就都已经非常简单了,不用再详细说明了,只要看下,大致都能看懂。
对了,最后再说下hadoop的脚本里面用的shell解释器的声明吧。
#!/usr/bin/env bash作用就是适应各种linux操作系统,能够找到 bash shell来解释执行本脚本,也挺有用的。
大数据时代之hadoop(二):hadoop脚本解析