首页 > 代码库 > 分治算法——合并排序与自然排序
分治算法——合并排序与自然排序
合并排序算法:
public class MergeSort { public static void MergeSort(int A[],int low,int high){ if(low<high){ int middle=(low+high)/2; MergeSort(A,low,middle); MergeSort(A,middle+1,high); Merge(A,low,middle,high); } } public static void Merge(int A[],int low,int middle,int high){ int B[]=new int[high-low+1]; int k=0; int i=low,j=middle+1; while(i<=middle&&j<=high) B[k++]=A[i]<A[j]?A[i++]:A[j++]; while(i<=middle) B[k++]=A[i++]; while(j<=high) B[k++]=A[j++]; i=low; k=0; while(i<=high) A[i++]=B[k++]; } }
自然排序算法:
public class MergeSortUpgrade { public static void MergeSortUpgrade(int A[]){ int s=1; while(s<A.length){ MergePass(A,s); s+=s; } } public static void MergePass(int A[],int s){ int n=A.length; int i; for( i=0;i<=n-2*s;i=i+2*s) Merge(A,i,i+s-1,i+2*s-1); if(i+s<n)Merge(A,i,i+s-1,n-1); } public static void Merge(int A[],int first,int middle,int end){ int B[]=new int[end-first+1]; int i=first,j=middle+1,k=0; while(i<=middle&&j<=end) B[k++]=A[i]<A[j]?A[i++]:A[j++]; while(i<=middle) B[k++]=A[i++]; while(j<=end) B[k++]=A[j++]; i=first;k=0; while(i<=end) A[i++]=B[k++]; } }
合并排序:先分在合并。
自然排序:合并长度为s的子数组段,s初始为1,接下来s+=s。
分治算法——合并排序与自然排序
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。