首页 > 代码库 > Python数据结构——散列表

Python数据结构——散列表

散列表的实现常常叫做散列(hashing)。散列仅支持INSERT,SEARCH和DELETE操作,都是在常数平均时间执行的。需要元素间任何排序信息的操作将不会得到有效的支持。

散列表是普通数组概念的推广。如果空间允许,可以提供一个数组,为每个可能的关键字保留一个位置,就可以运用直接寻址技术。

当实际存储的关键字比可能的关键字总数较小时,采用散列表就比较直接寻址更为有效。在散列表中,不是直接把关键字用作数组下标,而是根据关键字计算出下标,这种

关键字与下标之间的映射就叫做散列函数。

1.散列函数

一个好的散列函数应满足简单移植散列的假设:每个关键字都等可能的散列到m个槽位的任何一个中去,并与其它的关键字已被散列到哪个槽位无关。

1.1 通常散列表的关键字都是自然数。

1.11 除法散列法

通过关键字k除以槽位m的余数来映射到某个槽位中。

hash(k)=k mod m

应用除法散列时,应注意m的选择,m不应该是2的幂,通常选择与2的幂不太接近的质数。

1.12 乘法散列法

乘法方法包含两个步骤,第一步用关键字k乘上常数A(0<A<1),并取出小数部分,然后用m乘以这个值,再取结果的底(floor)。

hash(k)=floor(m(kA mod 1))

乘法的一个优点是对m的选择没有什么特别的要求,一般选择它为2的某个幂。

一般取A=(√5-1)/2=0.618比较理想。

1.13 全域散列

随机的选择散列函数,使之独立于要存储的关键字。在执行开始时,就从一族仔细设计的函数中,随机的选择一个作为散列函数,随机化保证了

没有哪一种输入会始终导致最坏情况发生。

1.2 如果关键字是字符串,散列函数需要仔细的选择

1.2.1 将字符串中字符的ASCII码值相加

def _hash(key,m):    hashVal=0    for _ in key:        hashVal+=ord(_)    return hashVal%m

由于ascii码最大127,当表很大时,函数不会很好的分配关键字。

1.2.2 取关键字的前三个字符。

值27表示英文字母表的字母个数加上一个空格。

hash(k)=k[0]+27*k[1]+729*k[2]

1.2.3 用霍纳法则把所有字符扩展到n次多项式。

用32代替27,可以用于位运算。

def _hash(key,m):    hashval=0    for _ in key:        hashval=(hashval<<5)+ord(_)    return hashval%m

2. 分离链接法

散列表会面临一个问题,当两个关键字散列到同一个值的时候,称之为冲突或者碰撞(collision)。解决冲突的第一种方法通常叫做分离链接法(separate chaining)。

其做法是将散列到同一个值的所有元素保留到一个链表中,槽中保留一个指向链表头的指针。

为执行FIND,使用散列函数来确定要考察哪个表,遍历该表并返回关键字所在的位置。

为执行INSERT,首先确定该元素是否在表中。如果是新元素,插入表的前端或末尾。

为执行DELETE,找到该元素执行链表删除即可。

散列表中元素个数与散列表大小的比值称之为装填因子(load factor)λ。

执行一次不成功的查找,遍历的链接数平均为λ,成功的查找则花费1+(λ/2)。

分离链接散列的一般做法是使得λ尽量接近于1。

代码:

class _ListNode(object):    def __init__(self,key):        self.key=key        self.next=Noneclass HashMap(object):    def __init__(self,tableSize):        self._table=[None]*tableSize        self._n=0  #number of nodes in the map    def __len__(self):        return self._n    def _hash(self,key):        return abs(hash(key))%len(self._table)    def __getitem__(self,key):        j=self._hash(key)        node=self._table[j]        while node is not None and node.key!=key :            node=node.next        if node is None:            raise KeyError,‘KeyError‘+repr(key)        return node            def insert(self,key):        try:            self[key]        except KeyError:            j=self._hash(key)            node=self._table[j]            self._table[j]=_ListNode(key)            self._table[j].next=node            self._n+=1    def __delitem__(self,key):        j=self._hash(key)        node=self._table[j]        if node is not None:            if node.key==key:                self._table[j]=node.next                self._-=1            else:                while node.next!=None:                    pre=node                    node=node.next                    if node.key==key:                        pre.next=node.next                        self._n-=1                        break

3.开放定址法

 在开放定址散列算法中,如果有冲突发生,那么就要尝试选择另外的单元,直到找出空的单元为止。

   h(k,i)=(h‘(k)+f(i)) mod m,i=0,1,...,m-1   ,其中f(0)=0

3.1 线性探测法

函数f(i)是i的线性函数

  h(k,i)=(h‘(k)+i) mod m 

相当于逐个探测每个单元

线性探测会存在一个问题,称之为一次群集。随着被占用槽的增加,平均查找时间也会不断增加。当一个空槽前有i个满的槽时,该空槽为下一个将被占用

槽的概率是(i+1)/m。连续被占用槽的序列会越来越长,平均查找时间也会随之增加。

如果表有一半多被填满的话,线性探测不是个好办法。

3.2 平法探测

 平方探测可以取消线性探测中的一次群集问题。

h(k,i)=(h‘(k)+c1i+c2i2) mod m

平方探测中,如果表的一半为空,并且表的大小是质数,保证能够插入一个新的元素。

平方探测会引起二次群集的问题。

3.3 双散列

双散列是用于开放定址法的最好方法之一。

h(k,i)=(h1(k)+ih2(k)) mod m

为能查找整个散列表,值h2(k)要与m互质。确保这个条件成立的一种方法是取m为2的幂,并设计一个总产生奇数的h2。另一种方法是取m为质数,并设计一个总是产生

较m小的正整数的h2。

例如取:

h1(k)=k mod m,h2(k)=1+(k mod m‘),m‘为略小于m的整数。

给定一个装填因子λ的开放定址散列表,插入一个元素至多需要1/(1-λ)次探查。

给定一个装填因子λ<1的开放定址散列表,一次成功查找中的期望探查数至多为(1/λ)ln(1/1-λ)。

4.  再散列

如果表的元素填得太满,那么操作的运行时间将开始消耗过长。一种解决方法是当表到达某个装填因子时,建立一个大约两倍大的表,而且使用一个相关的新散列函数,

扫描整个原始散列表,计算每个元素的新散列值并将其插入到新表中。

 为避免开放定址散列查找错误,删除操作要采用懒惰删除。

代码

class HashEntry(object):    def __init__(self,key,value):        self.key=key        self.value=http://www.mamicode.com/value>