首页 > 代码库 > [算法]三角形与立方体重叠测试

[算法]三角形与立方体重叠测试

//AABBtriangle.h#pragma once/********************************************************/ /* AABB-triangle overlap test code */ 					/* Function: int triBoxOverlap(float boxcenter[3], float boxhalfsize[3], float triverts[3][3]); */	/********************************************************/#include <math.h> #include <stdio.h> #define X 0 #define Y 1 #define Z 2#define CROSS(dest,v1,v2) dest[0] = v1[1] * v2[2] - v1[2] * v2[1];dest[1] = v1[2] * v2[0] - v1[0] * v2[2];dest[2] = v1[0] * v2[1] - v1[1] * v2[0];#define DOT(v1,v2) v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2] #define SUB(dest,v1,v2)  dest[0] = v1[0] - v2[0];dest[1] = v1[1] - v2[1]; dest[2] = v1[2] - v2[2];#define FINDMINMAX(x0,x1,x2,min,max) min = max = x0; if (x1 < min) min = x1; if (x1 > max) max = x1; if (x2 < min) min = x2; if (x2 > max) max = x2;int planeBoxOverlap(float normal[3], float d, float maxbox[3]);/*======================== X-tests ========================*/ #define AXISTEST_X01(a, b, fa, fb) p0 = a*v0[Y] - b*v0[Z];p2 = a*v2[Y] - b*v2[Z]; if (p0<p2) { min = p0; max = p2; } else { min = p2; max = p0; } rad = fa * boxhalfsize[Y] + fb * boxhalfsize[Z]; if (min>rad || max<-rad) return 0;#define AXISTEST_X2(a, b, fa, fb)  p0 = a*v0[Y] - b*v0[Z]; p1 = a*v1[Y] - b*v1[Z]; if (p0<p1) { min = p0; max = p1; }else { min = p1; max = p0; } rad = fa * boxhalfsize[Y] + fb * boxhalfsize[Z]; if (min>rad || max<-rad) return 0;/*======================== Y-tests ========================*/ #define AXISTEST_Y02(a, b, fa, fb) p0 = -a*v0[X] + b*v0[Z]; p2 = -a*v2[X] + b*v2[Z];if (p0<p2) { min = p0; max = p2; }else { min = p2; max = p0; } rad = fa * boxhalfsize[X] + fb * boxhalfsize[Z]; if (min>rad || max<-rad) return 0;#define AXISTEST_Y1(a, b, fa, fb)  p0 = -a*v0[X] + b*v0[Z]; p1 = -a*v1[X] + b*v1[Z];if (p0<p1) { min = p0; max = p1; }else { min = p1; max = p0; } rad = fa * boxhalfsize[X] + fb * boxhalfsize[Z]; if (min>rad || max<-rad) return 0;/*======================== Z-tests ========================*/ #define AXISTEST_Z12(a, b, fa, fb)  p1 = a*v1[X] - b*v1[Y];  p2 = a*v2[X] - b*v2[Y]; if (p2<p1) { min = p2; max = p1; }else { min = p1; max = p2; }rad = fa * boxhalfsize[X] + fb * boxhalfsize[Y]; if (min>rad || max<-rad) return 0;#define AXISTEST_Z0(a, b, fa, fb)   p0 = a*v0[X] - b*v0[Y];  p1 = a*v1[X] - b*v1[Y]; if (p0<p1) { min = p0; max = p1; }else { min = p1; max = p0; }rad = fa * boxhalfsize[X] + fb * boxhalfsize[Y]; if (min>rad || max<-rad) return 0;int triBoxOverlap(float boxcenter[3], float boxhalfsize[3], float triverts[3][3]);

  

//AABBtriangle.cpp#include"AABBtriangle.h"int planeBoxOverlap(float normal[3], float d, float maxbox[3]){	int q;	float vmin[3], vmax[3];	for (q = X; q <= Z; q++)	{		if (normal[q] > 0.0f)		{			vmin[q] = -maxbox[q];			vmax[q] = maxbox[q];		}		else		{			vmin[q] = maxbox[q];			vmax[q] = -maxbox[q];		}	}	if (DOT(normal, vmin) + d > 0.0f) return 0;	if (DOT(normal, vmax) + d >= 0.0f) return 1;	return 0;}int triBoxOverlap(float boxcenter[3], float boxhalfsize[3], float triverts[3][3]){	/* use separating axis theorem to test overlap between triangle and box */	/* need to test for overlap in these directions: */	/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */	/* we do not even need to test these) */	/* 2) normal of the triangle */	/* 3) crossproduct(edge from tri, {x,y,z}-directin) */	/* this gives 3x3=9 more tests */	float v0[3], v1[3], v2[3];	float axis[3];	float min, max, d, p0, p1, p2, rad, fex, fey, fez; 	float normal[3], e0[3], e1[3], e2[3];	/* This is the fastest branch on Sun */ 	/* move everything so that the boxcenter is in (0,0,0) */	SUB(v0,triverts[0],boxcenter); 	SUB(v1, triverts[1], boxcenter);	SUB(v2, triverts[2], boxcenter); 		/* compute triangle edges */	SUB(e0, v1, v0); /* tri edge 0 */ 	SUB(e1, v2, v1); /* tri edge 1 */	SUB(e2, v0, v2); /* tri edge 2 */					 	/* Bullet 3: */	/* test the 9 tests first (this was faster) */	fex = fabs(e0[X]); 	fey = fabs(e0[Y]);	fez = fabs(e0[Z]);	AXISTEST_X01(e0[Z], e0[Y], fez, fey);	AXISTEST_Y02(e0[Z], e0[X], fez, fex);	AXISTEST_Z12(e0[Y], e0[X], fey, fex);	fex = fabs(e1[X]); 	fey = fabs(e1[Y]);	fez = fabs(e1[Z]);	AXISTEST_X01(e1[Z], e1[Y], fez, fey);	AXISTEST_Y02(e1[Z], e1[X], fez, fex); 	AXISTEST_Z0(e1[Y], e1[X], fey, fex);	fex = fabs(e2[X]); 	fey = fabs(e2[Y]);	fez = fabs(e2[Z]); 	AXISTEST_X2(e2[Z], e2[Y], fez, fey);	AXISTEST_Y1(e2[Z], e2[X], fez, fex); 	AXISTEST_Z12(e2[Y], e2[X], fey, fex);	/* Bullet 1: */ 	/* first test overlap in the {x,y,z}-directions */	/* find min, max of the triangle each direction, and test for overlap in */	/* that direction -- this is equivalent to testing a minimal AABB around */	/*  the triangle against the AABB */ 	/* test in X-direction */	FINDMINMAX(v0[X],v1[X],v2[X],min,max);	if (min>boxhalfsize[X] || max<-boxhalfsize[X]) return 0;	/* test in Y-direction */	FINDMINMAX(v0[Y], v1[Y], v2[Y], min, max);	if (min>boxhalfsize[Y] || max<-boxhalfsize[Y]) return 0; 		/* test in Z-direction */	FINDMINMAX(v0[Z], v1[Z], v2[Z], min, max); 	if (min>boxhalfsize[Z] || max<-boxhalfsize[Z]) return 0;	/* Bullet 2: */ 	/* test if the box intersects the plane of the triangle */	/* compute plane equation of triangle: normal*x+d=0 */	CROSS(normal, e0, e1);	d = -DOT(normal, v0); /* plane eq: normal.x+d=0 */	if (!planeBoxOverlap(normal, d, boxhalfsize)) return 0;	return 1; /* box and triangle overlaps */}

  

[算法]三角形与立方体重叠测试