首页 > 代码库 > POJ 1410 Intersection(线段相交&&判断点在矩形内&&坑爹)

POJ 1410 Intersection(线段相交&&判断点在矩形内&&坑爹)

Intersection


大意:给你一条线段,给你一个矩形,问是否相交。

    相交:线段完全在矩形内部算相交;线段与矩形任意一条边不规范相交算相交。

思路:知道具体的相交规则之后题其实是不难的,但是还有个坑点就是题目里明明说给的是矩形左上角跟右下角的点,但实际上不是,需要重新判断一下...真坑。

struct Point
{
    double x, y;
} A, B, C, D;
struct Line
{
    Point a, b;
} L;

int n;

double xmult(Point p1, Point p2, Point p)
{
    return (p1.x-p.x)*(p2.y-p.y)-(p2.x-p.x)*(p1.y-p.y);
}

///若共线,返回1;不共线,返回0。
int dot_inLine(Point p1, Point p2, Point p3){
    return zero(xmult(p1, p2, p3));
}
///判两点在线段同侧,点在线段上返回0
int same_side(Point p1, Point p2, Line l){
    return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps;
}
///判点是否在线段上,包括端点
int dot_onLine_in(Point p, Line l){
    return zero(xmult(p, l.a, l.b)) && (l.a.x-p.x)*(l.b.x-p.x) < eps && (l.a.y-p.y)*(l.b.y-p.y) < eps;
}
int intersect_in(Line u, Line v){
    if (!dot_inLine(u.a, u.b, v.a)
        || !dot_inLine(u.a, u.b, v.b))
        return !same_side(u.a, u.b,v) && !same_side(v.a, v.b,u);
    return dot_onLine_in(u.a, v) || dot_onLine_in(u.b, v)
        || dot_onLine_in(v.a, u) || dot_onLine_in(v.b, u);
}

bool is_Inter(Point A, Point B, Point C, Point D, Point t)
{
    if(xmult(t, A, B) > eps && xmult(t, B, C) > eps && xmult(t, C, D) > eps && xmult(t, D, A) > eps)
        return true;
    if(xmult(t, A, B) < eps && xmult(t, B, C) < eps && xmult(t, C, D) < eps && xmult(t, D, A) < eps)
        return true;
    if(t.x >= A.x && t.x <= B.x && t.y >= C.y && t.y <= B.y && (zero(xmult(t, A, B)) || zero(xmult(t, B, C)) || zero(xmult(t, C, D)) || zero(xmult(t, D, A))))
       return true;
    return false;
}

int T;

void Solve()
{
    scanf("%d", &T);
    while(T--)
    {
        scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &L.a.x, &L.a.y, &L.b.x, &L.b.y, &C.x, &C.y, &D.x, &D.y);
        A.x = min(C.x, D.x);
        A.y = max(C.y, D.y);
        C.x = max(C.x, D.x);
        C.y = min(C.y, D.y);
        B.x = C.x, B.y = A.y;
        D.x = A.x, D.y = C.y;
        if(is_Inter(A, B, C, D, L.a) && is_Inter(A, B, C, D, L.b))
        {
            printf("T\n");
        }
        else if(intersect_in((Line){A, B}, L) || intersect_in((Line){B, C,}, L) || intersect_in((Line){C, D}, L) || intersect_in((Line){D, A}, L))
        {
            printf("T\n");
        }
        else
        {
            printf("F\n");
        }
    }
}