首页 > 代码库 > POJ 3352-Road Construction (图论-双边联通分支算法)

POJ 3352-Road Construction (图论-双边联通分支算法)

题目大意:一个图,要求你加入最少的边,使得最后得到的图为一个边双连通分支。所谓的边双连通分支,即不存在桥的连通分支(题目保证数据中任意两点都联通)。

解题思路:先用tarjan算法进行缩点建立DAG图, 然后再进行寻找度为1的点有个数x, 那么需要添加的边即为(x+1)/ 2;

起初这样写, 一直WA,然后发现下面两个数据,发现并不能过。

技术分享
#include <stdio.h>#include <set>#include <vector>#include <string.h>#include <algorithm>using namespace std;const int N = 1003;vector<int>G[N];vector<pair<int, int> >DAG;int dfn[N], low[N], mk[N];int tot;int n, m;void init(){    tot = 0;    DAG.clear();    for(int i=1; i<=n; ++ i)    {        mk[i] = 0;        G[i].clear();        dfn[i] = low[i] = -1;    }}void tarjan(int u, int f){    dfn[u] = low[u] = ++ tot;    for(int i = 0; i < G[u].size(); ++ i)    {        int v = G[u][i];        if(dfn[v] == -1)        {            tarjan(v, u);            low[u] = min(low[u], low[v]);            if(dfn[u] < low[v])                DAG.push_back(make_pair(low[u], low[v]));        }        else if(v != f)            low[u] = min(low[u], dfn[v]);    }}void solve(){    init();    for(int i=1; i<=m; ++ i)    {        int u, v;        scanf("%d%d", &u, &v);        G[u].push_back(v);        G[v].push_back(u);    }    tarjan(1, -1);    for(int i=0; i<DAG.size(); ++ i)    {        pair<int, int> S = DAG[i];        mk[S.first] ++, mk[S.second] ++;    }    int ans = 0;    for(int i=1; i<=n; ++ i)    {        if(mk[i] == 1)            ans ++;    }    printf("%d\n", (ans + 1) / 2);}int main(){    while(scanf("%d%d", &n, &m) != EOF)        solve();    return 0;}
View Code

需要特别注意两组数据:

2 2

1 2

1 2

2 1

1 2

答案分别是:

0

1

代码如下:

技术分享
#include <stdio.h>#include <set>#include <vector>#include <string.h>#include <algorithm>using namespace std;const int N = 1003;vector<int>G[N];int dfn[N], low[N], mk[N];int tot;int n, m;void init(){    tot = 0;    for(int i=1; i<=n; ++ i)    {        mk[i] = 0;        G[i].clear();        dfn[i] = low[i] = -1;    }}void tarjan(int u, int f){    dfn[u] = low[u] = ++ tot;    for(int i = 0; i < G[u].size(); ++ i)    {        int v = G[u][i];        if(dfn[v] == -1)        {            tarjan(v, u);            low[u] = min(low[u], low[v]);        }        else if(v != f)            low[u] = min(low[u], dfn[v]);    }}void solve(){    init();    for(int i=1; i<=m; ++ i)    {        int u, v;        scanf("%d%d", &u, &v);        G[u].push_back(v);        G[v].push_back(u);    }    tarjan(1, -1);    for(int i = 1; i <= n; ++ i)    {        for(int j = 0; j < G[i].size(); ++ j)        {            if(low[i] != low[G[i][j]])                mk[low[i]] ++;        }    }    int ans = 0;    for(int i = 1; i <= n; ++ i)        if(mk[i] == 1)            ans ++;    printf("%d\n", (ans + 1) / 2);}int main(){    while(scanf("%d%d", &n, &m) != EOF)        solve();    return 0;}
View Code

 

POJ 3352-Road Construction (图论-双边联通分支算法)