首页 > 代码库 > boost.asio源码剖析(三) ---- 流程分析
boost.asio源码剖析(三) ---- 流程分析
* 常见流程分析之一(Tcp异步连接)
我们用一个简单的demo分析Tcp异步连接的流程:
1 #include <iostream> 2 #include <boost/asio.hpp> 3 4 // 异步连接回调函数 5 void on_connect(boost::system::error_code ec) 6 { 7 if (ec) // 连接失败, 输出错误码 8 std::cout << "async connect error:" << ec.message() << std::endl; 9 else // 连接成功10 std::cout << "async connect ok!" << std::endl;11 }12 13 int main()14 {15 boost::asio::io_service ios; // 创建io_service对象16 boost::asio::ip::tcp::endpoint addr(17 boost::asio::ip::address::from_string("127.0.0.1"), 12345); // server端地址18 boost::asio::ip::tcp::socket conn_socket(ios); // 创建tcp协议的socket对象19 conn_socket.async_connect(addr, &on_connect); // 发起异步连接请求20 ios.run(); // 调用io_service::run, 等待异步操作结果21 22 std::cin.get();23 return 0;24 }
这段代码中的异步连接请求在asio源码中的序列图如下:
其中,basic_socket是个模板类,tcp协议中的socket的定义如下:
typedef basic_socket<tcp> socket;
reactor的定义如下:
#if defined(BOOST_ASIO_WINDOWS_RUNTIME)
typedef class null_reactor reactor;
#elif defined(BOOST_ASIO_HAS_IOCP)
typedef class select_reactor reactor;
#elif defined(BOOST_ASIO_HAS_EPOLL)
typedef class epoll_reactor reactor;
#elif defined(BOOST_ASIO_HAS_KQUEUE)
typedef class kqueue_reactor reactor;
#elif defined(BOOST_ASIO_HAS_DEV_POLL)
typedef class dev_poll_reactor reactor;
#else
typedef class select_reactor reactor;
#endif
在这个序列图中最值得注意的一点是:在windows平台下,异步连接请求不是由Iocp处理的,而是由select模型处理的,这是与异步读写数据最大的不同之处。
* 常见流程分析之二(Tcp异步接受连接)
我们用一个简单的demo分析Tcp异步连接的流程:
1 #include <iostream> 2 #include <boost/asio.hpp> 3 #include <boost/bind.hpp> 4 5 // 异步连接回调函数 6 void on_accept(boost::system::error_code ec, boost::asio::ip::tcp::socket * socket_ptr) 7 { 8 if (ec) // 连接失败, 输出错误码 9 std::cout << "async accept error:" << ec.message() << std::endl;10 else // 连接成功11 std::cout << "async accept from (" << socket_ptr->remote_endpoint() << ")" << std::endl;12 13 // 断开连接, 释放资源.14 socket_ptr->close(), delete socket_ptr;15 }16 17 int main()18 {19 boost::asio::io_service ios; // 创建io_service对象20 boost::asio::ip::tcp::endpoint addr(21 boost::asio::ip::address::from_string("0.0.0.0"), 12345); // server端地址22 boost::asio::ip::tcp::acceptor acceptor(ios, addr, false); // 创建acceptor对象23 boost::asio::ip::tcp::socket * socket_ptr = new boost::asio::ip::tcp::socket(ios);24 acceptor.async_accept(*socket_ptr25 , boost::bind(&on_accept, boost::asio::placeholders::error, socket_ptr)); // 调用异步accept请求26 ios.run(); // 调用io_service::run, 等待异步操作结果27 28 std::cin.get();29 return 0;30 }
这段代码中的异步连接请求在asio源码中的序列图如下:
* 常见流程分析之三(Tcp异步读写数据)
我们依然以上一节的例子为基础,扩展一个简单的demo分析Tcp异步读写数据的流程:
1 #include <iostream> 2 #include <boost/asio.hpp> 3 #include <boost/bind.hpp> 4 #include <boost/shared_ptr.hpp> 5 #include <boost/array.hpp> 6 7 typedef boost::shared_ptr<boost::asio::ip::tcp::socket> socket_ptr_t; 8 typedef boost::array<char, 128> buffer_t; 9 typedef boost::shared_ptr<buffer_t> buffer_ptr_t;10 11 // 异步读数据回调函数12 void on_read(boost::system::error_code ec13 , std::size_t len, socket_ptr_t socket_ptr, buffer_ptr_t buffer_ptr)14 {15 if (ec)16 std::cout << "async write error:" << ec.message() << std::endl;17 else18 {19 std::cout << "async read size:" << len;20 std::cout << " info:" << std::string((char*)buffer_ptr->begin(), len) << std::endl;21 22 // auto release socket and buffer.23 }24 }25 26 // 异步写数据回调函数27 void on_write(boost::system::error_code ec28 , std::size_t len, socket_ptr_t socket_ptr, buffer_ptr_t buffer_ptr)29 {30 if (ec)31 std::cout << "async write error:" << ec.message() << std::endl;32 else33 {34 std::cout << "async write size:" << len << std::endl;35 socket_ptr->async_read_some(boost::asio::buffer(buffer_ptr.get(), buffer_t::size())36 , boost::bind(&on_read, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred37 , socket_ptr, buffer_ptr));38 }39 }40 41 // 异步连接回调函数42 void on_accept(boost::system::error_code ec, socket_ptr_t socket_ptr)43 {44 if (ec) // 连接失败, 输出错误码45 {46 std::cout << "async accept error:" << ec.message() << std::endl;47 }48 else // 连接成功49 {50 std::cout << "async accept from (" << socket_ptr->remote_endpoint() << ")" << std::endl;51 buffer_ptr_t buffer_ptr(new buffer_t);52 strcpy_s((char*)buffer_ptr->begin(), buffer_t::size(), "abcdefg");53 socket_ptr->async_write_some(boost::asio::buffer(buffer_ptr.get(), strlen((char*)buffer_ptr->begin()))54 , boost::bind(&on_write, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred55 , socket_ptr, buffer_ptr));56 }57 }58 59 int main()60 {61 boost::asio::io_service ios; // 创建io_service对象62 boost::asio::ip::tcp::endpoint addr(63 boost::asio::ip::address::from_string("0.0.0.0"), 12345); // server端地址64 boost::asio::ip::tcp::acceptor acceptor(ios, addr, false); // 创建acceptor对象65 socket_ptr_t socket_ptr(new boost::asio::ip::tcp::socket(ios));66 acceptor.async_accept(*socket_ptr67 , boost::bind(&on_accept, boost::asio::placeholders::error, socket_ptr)); // 调用异步accept请求68 ios.run(); // 调用io_service::run, 等待异步操作结果69 70 std::cout << "press enter key...";71 std::cin.get();72 return 0;73 }
这段代码中的异步连接请求在asio源码中的序列图如下:
* 常见流程分析之四(Tcp强制关闭连接)
我们依然以上一节的例子为基础,扩展一个简单的demo分析Tcp强制关闭连接的流程:
1 #include <iostream> 2 #include <boost/asio.hpp> 3 #include <boost/bind.hpp> 4 #include <boost/shared_ptr.hpp> 5 #include <boost/array.hpp> 6 7 typedef boost::shared_ptr<boost::asio::ip::tcp::socket> socket_ptr_t; 8 typedef boost::array<char, 128> buffer_t; 9 typedef boost::shared_ptr<buffer_t> buffer_ptr_t;10 11 // 异步读数据回调函数12 void on_read(boost::system::error_code ec13 , std::size_t len, socket_ptr_t socket_ptr, buffer_ptr_t buffer_ptr)14 {15 if (ec) // 连接失败, 输出错误码16 {17 std::cout << "async read error:" << ec.message() << std::endl;18 }19 }20 21 // 异步写数据回调函数22 void on_write(boost::system::error_code ec23 , std::size_t len, socket_ptr_t socket_ptr, buffer_ptr_t buffer_ptr)24 {25 if (ec) // 连接失败, 输出错误码26 {27 std::cout << "async write error:" << ec.message() << std::endl;28 }29 }30 31 // 异步连接回调函数32 void on_accept(boost::system::error_code ec, socket_ptr_t socket_ptr)33 {34 if (ec) // 连接失败, 输出错误码35 {36 std::cout << "async accept error:" << ec.message() << std::endl;37 }38 else // 连接成功39 {40 std::cout << "async accept from (" << socket_ptr->remote_endpoint() << ")" << std::endl;41 42 {43 buffer_ptr_t buffer_ptr(new buffer_t);44 strcpy_s((char*)buffer_ptr->begin(), buffer_t::size(), "abcdefg");45 socket_ptr->async_write_some(boost::asio::buffer(buffer_ptr.get(), strlen((char*)buffer_ptr->begin()))46 , boost::bind(&on_write, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred47 , socket_ptr, buffer_ptr));48 }49 50 {51 buffer_ptr_t buffer_ptr(new buffer_t);52 socket_ptr->async_read_some(boost::asio::buffer(buffer_ptr.get(), buffer_t::size())53 , boost::bind(&on_read, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred54 , socket_ptr, buffer_ptr));55 }56 57 /// 强制关闭连接58 socket_ptr->close(ec);59 if (ec)60 std::cout << "close error:" << ec.message() << std::endl;61 }62 }63 64 int main()65 {66 boost::asio::io_service ios; // 创建io_service对象67 boost::asio::ip::tcp::endpoint addr(68 boost::asio::ip::address::from_string("0.0.0.0"), 12345); // server端地址69 boost::asio::ip::tcp::acceptor acceptor(ios, addr, false); // 创建acceptor对象70 socket_ptr_t socket_ptr(new boost::asio::ip::tcp::socket(ios));71 acceptor.async_accept(*socket_ptr72 , boost::bind(&on_accept, boost::asio::placeholders::error, socket_ptr)); // 调用异步accept请求73 socket_ptr.reset();74 ios.run(); // 调用io_service::run, 等待异步操作结果75 76 std::cout << "press enter key...";77 std::cin.get();78 return 0;79 }
这个例子中,接受到客户端的连接后,立即发起异步读请求和异步写请求,然后立即强制关闭socket。
其中,强制关闭socket的请求在asio源码中的序列图如下:
* 常见流程分析之五(Tcp优雅地关闭连接)
我们依然以第三节的例子为基础,扩展一个简单的demo分析Tcp优雅地关闭连接的流程:
1 #include <iostream> 2 #include <boost/asio.hpp> 3 #include <boost/bind.hpp> 4 #include <boost/shared_ptr.hpp> 5 #include <boost/array.hpp> 6 7 typedef boost::shared_ptr<boost::asio::ip::tcp::socket> socket_ptr_t; 8 typedef boost::array<char, 32> buffer_t; 9 typedef boost::shared_ptr<buffer_t> buffer_ptr_t;10 11 12 // 异步读数据回调函数13 void on_read(boost::system::error_code ec14 , std::size_t len, socket_ptr_t socket_ptr, buffer_ptr_t buffer_ptr)15 {16 static int si = 0;17 if (ec) // 连接失败, 输出错误码18 {19 std::cout << "async read(" << si++ << ") error:" << ec.message() << std::endl;20 socket_ptr->shutdown(boost::asio::socket_base::shutdown_receive, ec);21 socket_ptr->close(ec);22 if (ec)23 std::cout << "close error:" << ec.message() << std::endl;24 }25 else26 {27 std::cout << "read(" << si++ << ") len:" << len << std::endl;28 29 socket_ptr->async_read_some(boost::asio::buffer(buffer_ptr.get(), buffer_t::size())30 , boost::bind(&on_read, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred31 , socket_ptr, buffer_ptr));32 }33 }34 35 // 异步写数据回调函数36 void on_write(boost::system::error_code ec37 , std::size_t len, socket_ptr_t socket_ptr, buffer_ptr_t buffer_ptr)38 {39 if (ec) // 连接失败, 输出错误码40 {41 std::cout << "async write error:" << ec.message() << std::endl;42 }43 else44 {45 /// 优雅地关闭连接46 socket_ptr->shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);47 if (ec)48 std::cout << "shutdown send error:" << ec.message() << std::endl;49 }50 }51 52 // 异步连接回调函数53 void on_accept(boost::system::error_code ec, socket_ptr_t socket_ptr)54 {55 if (ec) // 连接失败, 输出错误码56 {57 std::cout << "async accept error:" << ec.message() << std::endl;58 }59 else // 连接成功60 {61 std::cout << "async accept from (" << socket_ptr->remote_endpoint() << ")" << std::endl;62 63 {64 buffer_ptr_t buffer_ptr(new buffer_t);65 socket_ptr->async_read_some(boost::asio::buffer(buffer_ptr.get(), buffer_t::size())66 , boost::bind(&on_read, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred67 , socket_ptr, buffer_ptr));68 }69 70 {71 buffer_ptr_t buffer_ptr(new buffer_t);72 strcpy_s((char*)buffer_ptr->begin(), buffer_t::size(), "abcdefg");73 socket_ptr->async_write_some(boost::asio::buffer(buffer_ptr.get(), strlen((char*)buffer_ptr->begin()))74 , boost::bind(&on_write, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred75 , socket_ptr, buffer_ptr));76 }77 }78 }79 80 int main()81 { 82 boost::asio::io_service ios; // 创建io_service对象83 boost::asio::ip::tcp::endpoint addr(84 boost::asio::ip::address::from_string("0.0.0.0"), 12345); // server端地址85 boost::asio::ip::tcp::acceptor acceptor(ios, addr, false); // 创建acceptor对象86 socket_ptr_t socket_ptr(new boost::asio::ip::tcp::socket(ios));87 acceptor.async_accept(*socket_ptr88 , boost::bind(&on_accept, boost::asio::placeholders::error, socket_ptr)); // 调用异步accept请求89 socket_ptr.reset();90 ios.run(); // 调用io_service::run, 等待异步操作结果91 92 std::cout << "press enter key...";93 std::cin.get();94 return 0;95 }
在这个例子中,接收到客户端的连接并向客户端发送数据以后,先关闭socket的发送通道,然后等待socket接收缓冲区中的数据全部read出来以后,再关闭socket的接收通道。此时,socket的接收和发送通道均以关闭,任何进程都无法使用此socket收发数据,但其所占用的系统资源并未释放,底层发送缓冲区中的数据也不保证已全部发出,需要在此之后执行close操作以便释放系统资源。
若在释放系统资源前希望底层发送缓冲区中的数据依然可以发出,则需在socket的linger属性中设置一个等待时间,以便有时间等待发送缓冲区中的数据发送完毕。但linger中的值绝对不是越大越好,这是因为其原理是操作系统帮忙保留socket的资源以等待其发送缓冲区中的数据发送完毕,如果远端socket的一直未能接收数据便会导致本地socket一直等待下去,这对系统资源是极大的浪费。因此,在需要处理大量连接的服务端,linger的值一定不可过大。
由于本文会实时根据读者反馈的宝贵意见更新,为防其他读者看到过时的文章,因此本系列专题谢绝转载!