首页 > 代码库 > Count on the path
Count on the path
Count on the path
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Problem Description
bobo has a tree, whose vertices are conveniently labeled by 1,2,…,n.
Let f(a,b) be the minimum of vertices not on the path between vertices a and b.
There are q queries (ui,vi) for the value of f(ui,vi). Help bobo answer them.
Let f(a,b) be the minimum of vertices not on the path between vertices a and b.
There are q queries (ui,vi) for the value of f(ui,vi). Help bobo answer them.
Input
The input consists of several tests. For each tests:
The first line contains 2 integers n,q (4≤n≤106,1≤q≤106). Each of the following (n - 1) lines contain 2 integers ai,bi denoting an edge between vertices ai and bi (1≤ai,bi≤n). Each of the following q lines contains 2 integer u′i,v′i (1≤ui,vi≤n).
The queries are encrypted in the following manner.
u1=u′1,v1=v′1.
For i≥2, ui=u′i⊕f(ui - 1,vi - 1),vi=v′i⊕f(ui-1,vi-1).
Note ⊕ denotes bitwise exclusive-or.
It is guaranteed that f(a,b) is defined for all a,b.
The task contains huge inputs. `scanf` in g++ is considered too slow to get accepted. You may (1) submit the solution in c++; or (2) use hand-written input utilities.
The first line contains 2 integers n,q (4≤n≤106,1≤q≤106). Each of the following (n - 1) lines contain 2 integers ai,bi denoting an edge between vertices ai and bi (1≤ai,bi≤n). Each of the following q lines contains 2 integer u′i,v′i (1≤ui,vi≤n).
The queries are encrypted in the following manner.
u1=u′1,v1=v′1.
For i≥2, ui=u′i⊕f(ui - 1,vi - 1),vi=v′i⊕f(ui-1,vi-1).
Note ⊕ denotes bitwise exclusive-or.
It is guaranteed that f(a,b) is defined for all a,b.
The task contains huge inputs. `scanf` in g++ is considered too slow to get accepted. You may (1) submit the solution in c++; or (2) use hand-written input utilities.
Output
For each tests:
For each queries, a single number denotes the value.
For each queries, a single number denotes the value.
Sample Input
4 11 21 31 42 35 21 21 32 42 51 27 6
Sample Output
431
分析:参考http://www.lai18.com/content/8107004.html;
学到的东西很多,比如求子树的第二小,在当前根下却不在其中一个儿子的子树的最小值;
bel[i]表示i在1的哪个儿子下,fa[i]表示i的父亲,son[i]表示i的所有子树里面最小的节点,sec_son[i]对所有i的儿子j的son[j]排序后取第二小的;
dp[i]表示不是i,却是i的父亲的儿子j下的最小son[j],dp1[i]表示从1走到i所有分支子树下的最小节点;
代码:
#include <iostream>#include <cstdio>#include <cstdlib>#include <cmath>#include <algorithm>#include <climits>#include <cstring>#include <string>#include <set>#include <map>#include <queue>#include <stack>#include <vector>#include <list>#define rep(i,m,n) for(i=m;i<=n;i++)#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)#define mod 1000000007#define inf 0x3f3f3f3f#define vi vector<int>#define pb push_back#define mp make_pair#define fi first#define se second#define ll long long#define pi acos(-1.0)#define pii pair<int,int>#define Lson L, mid, ls[rt]#define Rson mid+1, R, rs[rt]const int maxn=1e6+10;using namespace std;ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}inline ll read(){ ll x=0;int f=1;char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f;}int n,m,k,t,q,tot,h[maxn],bel[maxn],fa[maxn],son[maxn],sec_son[maxn],dp[maxn],dp1[maxn],ans;struct node{ int to,nxt;}e[maxn<<1];void add(int x,int y){ tot++; e[tot].to=y; e[tot].nxt=h[x]; h[x]=tot;}void dfs(int now,int pre){ son[now]=sec_son[now]=inf; for(int i=h[now];i;i=e[i].nxt) { int to=e[i].to; if(to!=pre) { fa[to]=now; if(now!=1)bel[to]=bel[now]; dfs(to,now); if(son[now]>min(son[to],to)) { sec_son[now]=son[now]; son[now]=min(son[to],to); } } }}void dfs1(int now,int pre){ if(now!=1)dp1[now]=min(dp1[fa[now]],dp[now]); else dp1[now]=inf; for(int i=h[now];i;i=e[i].nxt) { int to=e[i].to; if(to!=pre) { dfs1(to,now); } }}void solve(int x,int y){ int now_ans=inf; for(int i=h[1];i;i=e[i].nxt) { int to=e[i].to; if(to!=bel[x]&&to!=bel[y])now_ans=min(min(now_ans,son[to]),to); } if(x!=1)now_ans=min(now_ans,son[x]); if(y!=1)now_ans=min(now_ans,son[y]); now_ans=min(now_ans,dp1[x]); now_ans=min(now_ans,dp1[y]); ans=now_ans;}int main(){ int i,j; while(~scanf("%d%d",&n,&q)) { ans=0; tot=0; memset(h,0,sizeof(h)); rep(i,1,n)bel[i]=i; rep(i,1,n-1) { int a,b; scanf("%d%d",&a,&b); add(a,b); add(b,a); } dfs(1,0); rep(i,2,n) { if(fa[i]==1) { dp[i]=inf; continue; } if(min(son[i],i)!=son[fa[i]])dp[i]=son[fa[i]]; else dp[i]=sec_son[fa[i]]; } dfs1(1,0); while(q--) { int a,b; scanf("%d%d",&a,&b); a^=ans,b^=ans; if(bel[a]==bel[b])ans=1; else solve(a,b); printf("%d\n",ans); } } //system("Pause"); return 0;}
Count on the path
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。