首页 > 代码库 > caffe模型各层数据和参数可视化
caffe模型各层数据和参数可视化
先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化。
In [1]:
#加载必要的库import numpy as npimport matplotlib.pyplot as plt%matplotlib inlineimport sys,os,caffe
In [2]:
#设置当前目录,判断模型是否训练好caffe_root = ‘/home/bnu/caffe/‘ sys.path.insert(0, caffe_root + ‘python‘)os.chdir(caffe_root)if not os.path.isfile(caffe_root + ‘examples/cifar10/cifar10_quick_iter_4000.caffemodel‘): print("caffemodel is not exist...")
In [3]:
#利用提前训练好的模型,设置测试网络caffe.set_mode_gpu()net = caffe.Net(caffe_root + ‘examples/cifar10/cifar10_quick.prototxt‘, caffe_root + ‘examples/cifar10/cifar10_quick_iter_4000.caffemodel‘, caffe.TEST)
In [4]:
net.blobs[‘data‘].data.shape
Out[4]:
(1, 3, 32, 32)
In [5]:
#加载测试图片,并显示im = caffe.io.load_image(‘examples/images/32.jpg‘)print im.shapeplt.imshow(im)plt.axis(‘off‘)
(32, 32, 3)
Out[5]:
(-0.5, 31.5, 31.5, -0.5)
In [6]:
# 编写一个函数,将二进制的均值转换为python的均值def convert_mean(binMean,npyMean): blob = caffe.proto.caffe_pb2.BlobProto() bin_mean = open(binMean, ‘rb‘ ).read() blob.ParseFromString(bin_mean) arr = np.array( caffe.io.blobproto_to_array(blob) ) npy_mean = arr[0] np.save(npyMean, npy_mean )binMean=caffe_root+‘examples/cifar10/mean.binaryproto‘npyMean=caffe_root+‘examples/cifar10/mean.npy‘convert_mean(binMean,npyMean)
In [7]:
#将图片载入blob中,并减去均值transformer = caffe.io.Transformer({‘data‘: net.blobs[‘data‘].data.shape})transformer.set_transpose(‘data‘, (2,0,1))transformer.set_mean(‘data‘, np.load(npyMean).mean(1).mean(1)) # 减去均值transformer.set_raw_scale(‘data‘, 255) transformer.set_channel_swap(‘data‘, (2,1,0))net.blobs[‘data‘].data[...] = transformer.preprocess(‘data‘,im)inputData=net.blobs[‘data‘].data
In [8]:
#显示减去均值前后的数据plt.figure()plt.subplot(1,2,1),plt.title("origin")plt.imshow(im)plt.axis(‘off‘)plt.subplot(1,2,2),plt.title("subtract mean")plt.imshow(transformer.deprocess(‘data‘, inputData[0]))plt.axis(‘off‘)
Out[8]:
(-0.5, 31.5, 31.5, -0.5)
In [9]:
#运行测试模型,并显示各层数据信息net.forward()[(k, v.data.shape) for k, v in net.blobs.items()]
Out[9]:
[(‘data‘, (1, 3, 32, 32)), (‘conv1‘, (1, 32, 32, 32)), (‘pool1‘, (1, 32, 16, 16)), (‘conv2‘, (1, 32, 16, 16)), (‘pool2‘, (1, 32, 8, 8)), (‘conv3‘, (1, 64, 8, 8)), (‘pool3‘, (1, 64, 4, 4)), (‘ip1‘, (1, 64)), (‘ip2‘, (1, 10)), (‘prob‘, (1, 10))]
In [10]:
#显示各层的参数信息[(k, v[0].data.shape) for k, v in net.params.items()]
Out[10]:
[(‘conv1‘, (32, 3, 5, 5)), (‘conv2‘, (32, 32, 5, 5)), (‘conv3‘, (64, 32, 5, 5)), (‘ip1‘, (64, 1024)), (‘ip2‘, (10, 64))]
In [11]:
# 编写一个函数,用于显示各层数据def show_data(data, padsize=1, padval=0): data -= data.min() data /= data.max() # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode=‘constant‘, constant_values=(padval, padval)) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.figure() plt.imshow(data,cmap=‘gray‘) plt.axis(‘off‘)plt.rcParams[‘figure.figsize‘] = (8, 8)plt.rcParams[‘image.interpolation‘] = ‘nearest‘plt.rcParams[‘image.cmap‘] = ‘gray‘
In [12]:
#显示第一个卷积层的输出数据和权值(filter)show_data(net.blobs[‘conv1‘].data[0])print net.blobs[‘conv1‘].data.shapeshow_data(net.params[‘conv1‘][0].data.reshape(32*3,5,5))print net.params[‘conv1‘][0].data.shape
(1, 32, 32, 32)(32, 3, 5, 5)
In [13]:
#显示第一次pooling后的输出数据show_data(net.blobs[‘pool1‘].data[0])net.blobs[‘pool1‘].data.shape
Out[13]:
(1, 32, 16, 16)
In [14]:
#显示第二次卷积后的输出数据以及相应的权值(filter)show_data(net.blobs[‘conv2‘].data[0],padval=0.5)print net.blobs[‘conv2‘].data.shapeshow_data(net.params[‘conv2‘][0].data.reshape(32**2,5,5))print net.params[‘conv2‘][0].data.shape
(1, 32, 16, 16)(32, 32, 5, 5)
In [15]:
#显示第三次卷积后的输出数据以及相应的权值(filter),取前1024个进行显示show_data(net.blobs[‘conv3‘].data[0],padval=0.5)print net.blobs[‘conv3‘].data.shapeshow_data(net.params[‘conv3‘][0].data.reshape(64*32,5,5)[:1024])print net.params[‘conv3‘][0].data.shape
(1, 64, 8, 8)(64, 32, 5, 5)
In [16]:
#显示第三次池化后的输出数据show_data(net.blobs[‘pool3‘].data[0],padval=0.2)print net.blobs[‘pool3‘].data.shape
(1, 64, 4, 4)
In [17]:
# 最后一层输入属于某个类的概率feat = net.blobs[‘prob‘].data[0]print featplt.plot(feat.flat)
[ 5.21440245e-03 1.58397834e-05 3.71246301e-02 2.28459597e-01 1.08315737e-03 7.17785358e-01 1.91939052e-03 7.67927198e-03 6.13298907e-04 1.05107691e-04]
Out[17]:
[<matplotlib.lines.Line2D at 0x7f3d882b00d0>]
从输入的结果和图示来看,最大的概率是7.17785358e-01,属于第5类(标号从0开始)。与cifar10中的10种类型名称进行对比:
airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck
根据测试结果,判断为dog。 测试无误!
原文见:http://www.cnblogs.com/denny402/p/5105911.html
caffe模型各层数据和参数可视化
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。