首页 > 代码库 > 逆时针旋转的矩阵变换
逆时针旋转的矩阵变换
关键:矩阵A完全由它对单位阵I的各列的作用所决定
例如:拉伸变换T(x)=3x,求标准矩阵。
解:
设e1是单位阵的第一列,e2为单位阵的第二列。
T(e1)=3e1=[3,0]T
T(e2)=3e2=[0,3]T
则A=[3, 0; 0, 3]就是线性变换T的标准矩阵
同理:
[1, 0]T旋转成为[cos a, sin a]T
[0, 1]T旋转成为[-sin a, cos a]T
总结:
任意一个向量x,可以写成单位阵与该向量的乘积,即
任意x,有x=Ix=[e1,e2,...,en]x=x1e1+x2e2+...+xnen
T是线性变换,则
T(x) = T(x1e1+x2e2+..+xnen) = x1T(e1)+...+xnT(en) = [T(e1), T(e2), T(e3), ... , T(en)]*[x1, x2, ... , xn]T = Ax
逆时针旋转的矩阵变换
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。