首页 > 代码库 > 神经网络:caffe特征可视化的代码样例
神经网络:caffe特征可视化的代码样例
caffe特征可视化的代码样例
不少读者看了我前面两篇文章
总结一下用caffe跑图片数据的研究流程
deep learning实践经验总结2--准确率再次提升,到达0.8,再来总结一下
之后,想知道我是怎么实现特征可视化的。
简单来说,其实就是让神经网络正向传播一次,然后把某层的特征值给取出来,然后转换为图片保存。
下面我提供一个demo,大家可以根据自己的需求修改。
先看看我的demo的使用方法。
visualize_features.bin net_proto pretrained_net_proto iterations [CPU/GPU] img_list_file dstdir laydepth
visualize_features.bin是cpp编译出来的可执行文件
下面看看各参数的意义:
1 net_proto:caffe规定的一种定义网络结构的文件格式,后缀名为".prototxt"。这个文件定义了网络的输入,已经相关参数,还有就是整体的网络结构。
2 pretrained_net_proto:这个是已经训练好了的模型
3 iterations:迭代次数
4 [CPU/GPU]:cpu还是gpu模式
5 img_list_file:待测试的文件名列表。我这里需要这个主要是为了得到图片的类名。
6 dstdir:图片输出的文件夹
7 laydepth:需要输出哪一层的特征
下面是一个实例例子:
./visualize_features.bin /home/linger/linger/caffe-action/caffe-master/examples/cifar10/cifar10_full_test.prototxt /home/linger/linger/caffe-action/caffe-master/examples/cifar10/cifar10_full_iter_60000 20 GPU /home/linger/linger/testfile/skirt_test_attachment/image_filename /home/linger/linger/testfile/innerproduct/ 7
下面是源代码:
// Copyright 2013 Yangqing Jia // // This is a simple script that allows one to quickly test a network whose // structure is specified by text format protocol buffers, and whose parameter // are loaded from a pre-trained network. // Usage: // test_net net_proto pretrained_net_proto iterations [CPU/GPU] #include <cuda_runtime.h> #include <fstream> #include <iostream> #include <cstring> #include <cstdlib> #include <algorithm> #include <vector> #include <utility> #include "caffe/caffe.hpp" #include <opencv2/highgui/highgui.hpp> #include <opencv2/highgui/highgui_c.h> #include <opencv2/imgproc/imgproc.hpp> using std::make_pair; using std::pair; using namespace caffe; // NOLINT(build/namespaces) using namespace std; vector<string> fileNames; char * filelist; /* * 读入的文件的内容格式类似这样子的:全局id 类名_所在类的id.jpg 0 一步裙_0.jpg 1 一步裙_1.jpg 2 一步裙_10.jpg */ void readFile() { if(fileNames.empty()) { ifstream read(filelist); //"/home/linger/linger/testfile/test_attachment/image_filename" // "/home/linger/imdata/test_files_collar.txt" // "/home/linger/linger/testfile/testfilename" if(read.is_open()) { while(!read.eof()) { string name; int id; read>>id>>name; fileNames.push_back(name); } } } } /* * 根据图片id获取类名 */ string getClassNameById(int id) { readFile(); int index = fileNames[id].find_last_of('_') ; return fileNames[id].substr(0, index); } void writeBatch(const float* data,int num,int channels,int width,int height,int startID,const char*dir) { for(int id = 0;id<num;id++) { for(int channel=0;channel<channels;channel++) { cv::Mat mat(height,width, CV_8UC1);//高宽 vector<vector<float> > vec; vec.resize(height); float max = -1; float min = 999999; for(int row=0;row<height;row++) { vec[row].resize(width); for(int col=0;col<width;col++) { vec[row][col] = data[id*channels*width*height+channel*width*height+row*width+col]; if(max<vec[row][col]) { max = vec[row][col]; } if(min>vec[row][col]) { min = vec[row][col]; } } } for(int row=0;row<height;row++) { for(int col=0;col<width;col++) { vec[row][col] = 255*((float)(vec[row][col]-min))/(max-min); uchar& img = mat.at<uchar>(row,col); img= vec[row][col]; } } char filename[100]; string label = getClassNameById(startID+id); string file_reg =dir; file_reg+="%s%05d_%05d.png"; snprintf(filename, 100, file_reg.c_str(), label.c_str(),startID+id,channel); //printf("%s\n",filename); cv::imwrite(filename, mat); } } } int main(int argc, char** argv) { if (argc < 4) { LOG(ERROR) << "visualize_features.bin net_proto pretrained_net_proto iterations " << "[CPU/GPU] img_list_file dstdir laydepth"; return 0; } /* ./visualize_features.bin /home/linger/linger/caffe-action/caffee-ext/Caffe_MM/prototxt/triplet/triplet_test_simple.prototxt /home/linger/linger/caffe-action/caffee-ext/Caffe_MM/snapshorts/_iter_100000 8 GPU /home/linger/linger/testfile/test_attachment/image_filename /home/linger/linger/testfile/innerproduct/ 6 */ filelist = argv[5]; cudaSetDevice(0); Caffe::set_phase(Caffe::TEST); if (argc == 5 && strcmp(argv[4], "GPU") == 0) { LOG(ERROR) << "Using GPU"; Caffe::set_mode(Caffe::GPU); } else { LOG(ERROR) << "Using CPU"; Caffe::set_mode(Caffe::CPU); } NetParameter test_net_param; ReadProtoFromTextFile(argv[1], &test_net_param); Net<float> caffe_test_net(test_net_param); NetParameter trained_net_param; ReadProtoFromBinaryFile(argv[2], &trained_net_param); caffe_test_net.CopyTrainedLayersFrom(trained_net_param); int total_iter = atoi(argv[3]); LOG(ERROR) << "Running " << total_iter << " Iterations."; double test_accuracy = 0; vector<Blob<float>*> dummy_blob_input_vec; int startID = 0; int nums; int dims; int batchsize = test_net_param.layers(0).layer().batchsize(); int laynum = caffe_test_net.bottom_vecs().size(); printf("num of layers:%d\n",laynum); for (int i = 0; i < total_iter; ++i) { const vector<Blob<float>*>& result = caffe_test_net.Forward(dummy_blob_input_vec); int laydepth = atoi(argv[7]); Blob<float>* features = (*(caffe_test_net.bottom_vecs().begin()+laydepth))[0];//调整第几层即可 nums = features->num(); dims= features->count()/features->num(); int num = features->num(); int channels = features->channels(); int width = features->width(); int height = features->height(); printf("channels:%d,width:%d,height:%d\n",channels,width,height); writeBatch(features->cpu_data(),num,channels,width,height,startID,argv[6]); startID += nums; } return 0; }