首页 > 代码库 > Longest Increasing Path in a Matrix
Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
nums = [ [9,9,4], [6,6,8], [2,1,1] ]
Return 4
The longest increasing path is [1, 2, 6, 9]
.
Example 2:
nums = [ [3,4,5], [3,2,6], [2,2,1] ]
Return 4
The longest increasing path is [3, 4, 5, 6]
. Moving diagonally is not allowed.
第一种方法,递归。很明显,时间超时,通不过。
1 public class Solution { 2 public int longestIncreasingPath(int[][] matrix) { 3 int[] max = new int[1]; 4 for (int i = 0; i < matrix.length; i++) { 5 for (int j = 0; j < matrix[0].length; j++) { 6 boolean[][] visited = new boolean[matrix.length][matrix[0].length]; 7 longestIncreasingPathHelper(matrix, visited, i, j, matrix[i][j] - 1, 0, max); 8 } 9 } 10 return max[0]; 11 } 12 13 public void longestIncreasingPathHelper(int[][] matrix, boolean[][] visited, int i, int j, int prev, int size, 14 int[] max) { 15 if (i < 0 || i >= matrix.length || j < 0 || j >= matrix[0].length) return; 16 17 if (visited[i][j] == true || matrix[i][j] <= prev) return; 18 19 visited[i][j] = true; 20 size++; 21 max[0] = Math.max(max[0], size); 22 23 longestIncreasingPathHelper(matrix, visited, i + 1, j, matrix[i][j], size, max); 24 longestIncreasingPathHelper(matrix, visited, i - 1, j, matrix[i][j], size, max); 25 longestIncreasingPathHelper(matrix, visited, i, j + 1, matrix[i][j], size, max); 26 longestIncreasingPathHelper(matrix, visited, i, j - 1, matrix[i][j], size, max); 27 visited[i][j] = false; 28 } 29 }
第二种方法类似第一种方法,但是我们不会每次都对同一个位置重复计算。对于一个点来讲,它的最长路径是由它周围的点决定的,你可能会认为,它周围的点也是由当前点决定的,这样就会陷入一个死循环的怪圈。其实并没有,因为我们这里有一个条件是路径上的值是递增的,所以我们一定能够找到一个点,它不比周围的值大,这样的话,整个问题就可以解决了。
1 public class Solution { 2 public int longestIncreasingPath(int[][] A) { 3 int res = 0; 4 if (A == null || A.length == 0 || A[0].length == 0) { 5 return res; 6 } 7 int[][] store = new int[A.length][A[0].length]; 8 for (int i = 0; i < A.length; i++) { 9 for (int j = 0; j < A[0].length; j++) { 10 if (store[i][j] == 0) { 11 res = Math.max(res, dfs(A, store, i, j)); 12 } 13 } 14 } 15 return res; 16 } 17 18 private int dfs(int[][] a, int[][] store, int i, int j) { 19 if (store[i][j] != 0) { 20 return store[i][j]; 21 } 22 int left = 0, right = 0, up = 0, down = 0; 23 if (j + 1 < a[0].length && a[i][j + 1] > a[i][j]) { 24 right = dfs(a, store, i, j + 1); 25 } 26 if (j > 0 && a[i][j - 1] > a[i][j]) { 27 left = dfs(a, store, i, j - 1); 28 } 29 if (i + 1 < a.length && a[i + 1][j] > a[i][j]) { 30 down = dfs(a, store, i + 1, j); 31 } 32 if (i > 0 && a[i - 1][j] > a[i][j]) { 33 up = dfs(a, store, i - 1, j); 34 } 35 store[i][j] = Math.max(Math.max(up, down), Math.max(left, right)) + 1; 36 return store[i][j]; 37 } 38 }
Longest Increasing Path in a Matrix
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。