首页 > 代码库 > 论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

 

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 

2016.10.23 

  摘要

 

 

 

 

 

 

 

  Contributions 

  GANs 提供了强大的框架来产生高质量的 plausible-looking natural images。本文提供了一个 very deep ResNet architure,利用 GANs 的概念,来形成一个 perceptual loss function 来靠近 human perception 来做 photo-realistic SISR

  主要贡献在于:

  1. 对于 image SR 来说,我们取得了新的顶尖效果,降低 4倍的分辨率,衡量标准为:PSNR 和 structure similarity (SSIM)。具体的来说,我们首先采用 fast feature learning in LR space and batch-normalization 来进行训练残差网络。

  2. 提出了结合 content loss 和 adversarial loss 作为我们的 perceptual loss。

 

 

  Method: 

  首先是几个概念:

    super solved image $I_{SR}$: W * H * C ;   low-resolution input image $I_{LR}$: rW * rH * C ;   high-resolution image $I_{HR}$ : rW * rH * C.  

  我们的终极目标是:训练一个产生式函数 G 能够预测给定的输入图像 LR input image 的 HR 部分。我们达到这个目的,我们训练一个 generator network 作为一个 feed-forward CNN $G_{\theta_{G}}$ 参数为 $\theta_{G}$ , 此处的 $\theta_{G} = {W_{1:L} ; b_{1:L}}$ 表示一个 L 层 deep network 的 weights 和 biases,并且是通过优化一个 SR-specific loss function $l^{SR}$ 得到的。对于一个给定的 训练图像 $I^{HR_{n}}$ ,n =  1,...,N 对应的低分辨率图像为:$I^{LR}_n$ ,我们优化下面这个问题:

技术分享

 

  1. Adversarial Network Architecture 

  产生式对抗网络的训练学习目标是一个 minmax problem :

技术分享

  作者也将图像超分辨看作是这么一个过程。通过 generator 产生一张超分辨图像,使得 discriminator 难以区分。

技术分享

  上图就是本文所涉及的大致流程。

  

  2. Perceptual Loss Function 

  本文所设计的感知损失函数 是本文算法性能的保证。

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network