首页 > 代码库 > 白书 5.4.4 多少块土地

白书 5.4.4 多少块土地

此题初识欧拉公式 V - E + F = 2. 

其中V是顶点(即所有线段的断点数加上交点数),E是边数(即n段椭圆弧加上这些线段被切成的段数),F是面数(即土地块数加上椭圆外那个无穷大的面)。

-------------------------------------------------------------------------------------------------------

有一块椭圆的地,你可以在边界上选n个点,并两两连接得到n(n-1)/2条线段。它们最多能把土地分成多少个部分?

解:

最优方案是不让三条线段交与1点。

欧拉公式:V-E+F=2.其中V是顶点(即所有线段的断点数加上交点数),E是边数(即n段椭圆弧加上这些线段被切成的段数),F是面数(即土地块数加上椭圆外那个无穷大的面)。

换句话说,只需求出V和E,答案就是E-V+1;

不管是定点还是边,计算时都要枚举一条从固定点出发(所以最后要乘以n)的所有对角线。假设该对角线左边有i个点,右边有n-2-i个点,则左右两边的点两两搭配后在这条对角线上形成了i*(n-2-i)个焦点,得到了i*(n-2-i)+1条线段。注意:每个交点被重复计算了4次,而每条线段被重新计算了2次。

//因为形成每个交点需要4个点两两组成2条线段相交于一点,需要2个点形成1条被分割的线段。

公式为

如果将n=1~5的答案写出来得:1、2、4、8、16.可能就会推出n=6时是32,但是不是的,而是31,因此找规律的时候要谨慎!