首页 > 代码库 > 树三:创建二叉树
树三:创建二叉树
指路法定位结点:
- 通过根结点与目标结点的相对位置进行定位
- 指路法可以避开二叉树递归的性质“线性”定位
- 在C语言中可以用 bit 位来进行指路:
#define BT_LEFT 0
#define BT_RIGHT 1
typedef unsigned long long BTPos;
二叉树的存储结构:
/* 结点指针域定义 */typedef struct _tag_BTreeNode BTreeNode;struct _tag_BTreeNode { BTreeNode* left; BTreeNode* right; };
/* 头结点定义 */typedef struct _tag_BTree BTree;struct _tag_BTree { int count; BTreeNode* root;};
/* 数据元素定义示例 */struct Node { BTreeNode header; char v;};
定位操作:
/* mani.c */#include <stdio.h>#include <stdlib.h>#include "BTree.h"/* run this program using the console pauser or add your own getch, system("pause") or input loop */struct Node{ BTreeNode header; char v;};void printf_data(BTreeNode* node){ if( node != NULL ) { printf("%c", ((struct Node*)node)->v); }}int main(int argc, char *argv[]){ BTree* tree = BTree_Create(); struct Node n1 = {{NULL, NULL}, ‘A‘}; struct Node n2 = {{NULL, NULL}, ‘B‘}; struct Node n3 = {{NULL, NULL}, ‘C‘}; struct Node n4 = {{NULL, NULL}, ‘D‘}; struct Node n5 = {{NULL, NULL}, ‘E‘}; struct Node n6 = {{NULL, NULL}, ‘F‘}; BTree_Insert(tree, (BTreeNode*)&n1, 0, 0, 0); BTree_Insert(tree, (BTreeNode*)&n2, 0x00, 1, 0); BTree_Insert(tree, (BTreeNode*)&n3, 0x01, 1, 0); BTree_Insert(tree, (BTreeNode*)&n4, 0x00, 2, 0); BTree_Insert(tree, (BTreeNode*)&n5, 0x02, 2, 0); BTree_Insert(tree, (BTreeNode*)&n6, 0x02, 3, 0); printf("Height: %d\n", BTree_Height(tree)); printf("Degree: %d\n", BTree_Degree(tree)); printf("Count: %d\n", BTree_Count(tree)); printf("Position At (0x02, 2): %c\n", ((struct Node*)BTree_Get(tree, 0x02, 2))->v); printf("Full Tree: \n"); BTree_Display(tree, printf_data, 4, ‘-‘); BTree_Delete(tree, 0x00, 1); printf("After Delete B: \n"); printf("Height: %d\n", BTree_Height(tree)); printf("Degree: %d\n", BTree_Degree(tree)); printf("Count: %d\n", BTree_Count(tree)); printf("Full Tree: \n"); BTree_Display(tree, printf_data, 4, ‘-‘); BTree_Clear(tree); printf("After Clear: \n"); printf("Height: %d\n", BTree_Height(tree)); printf("Degree: %d\n", BTree_Degree(tree)); printf("Count: %d\n", BTree_Count(tree)); BTree_Display(tree, printf_data, 4, ‘-‘); BTree_Destroy(tree); return 0;}
/* BTree.h */#ifndef _BTREE_H_#define _BTREE_H_#define BT_LEFT 0#define BT_RIGHT 1typedef void BTree;typedef unsigned long long BTPos;typedef struct _tag_BTreeNode BTreeNode;struct _tag_BTreeNode{ BTreeNode* left; BTreeNode* right;};typedef void (BTree_Printf)(BTreeNode*);BTree* BTree_Create();void BTree_Destroy(BTree* tree);void BTree_Clear(BTree* tree);int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag);BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count);BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count);BTreeNode* BTree_Root(BTree* tree);int BTree_Height(BTree* tree);int BTree_Count(BTree* tree);int BTree_Degree(BTree* tree);void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div);#endif
/* BTree.c */#include <stdio.h>#include <malloc.h>#include "BTree.h"typedef struct _tag_BTree TBTree;struct _tag_BTree{ int count; BTreeNode* root;};static void recursive_display(BTreeNode* node, BTree_Printf* pFunc, int format, int gap, char div) // O(n){ int i = 0; if( (node != NULL) && (pFunc != NULL) ) { for(i=0; i<format; i++) { printf("%c", div); } pFunc(node); printf("\n"); if( (node->left != NULL) || (node->right != NULL) ) { recursive_display(node->left, pFunc, format + gap, gap, div); recursive_display(node->right, pFunc, format + gap, gap, div); } } else { for(i=0; i<format; i++) { printf("%c", div); } printf("\n"); }}static int recursive_count(BTreeNode* root) // O(n){ int ret = 0; if( root != NULL ) { ret = recursive_count(root->left) + 1 + recursive_count(root->right); } return ret;}static int recursive_height(BTreeNode* root) // O(n){ int ret = 0; if( root != NULL ) { int lh = recursive_height(root->left); int rh = recursive_height(root->right); ret = ((lh > rh) ? lh : rh) + 1; } return ret;}static int recursive_degree(BTreeNode* root) // O(n){ int ret = 0; if( root != NULL ) { if( root->left != NULL ) { ret++; } if( root->right != NULL ) { ret++; } if( ret == 1 ) { int ld = recursive_degree(root->left); int rd = recursive_degree(root->right); if( ret < ld ) { ret = ld; } if( ret < rd ) { ret = rd; } } } return ret;}BTree* BTree_Create() // O(1){ TBTree* ret = (TBTree*)malloc(sizeof(TBTree)); if( ret != NULL ) { ret->count = 0; ret->root = NULL; } return ret;}void BTree_Destroy(BTree* tree) // O(1){ free(tree);}void BTree_Clear(BTree* tree) // O(1){ TBTree* btree = (TBTree*)tree; if( btree != NULL ) { btree->count = 0; btree->root = NULL; }}int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag) // O(n) { TBTree* btree = (TBTree*)tree; int ret = (btree != NULL) && (node != NULL) && ((flag == BT_LEFT) || (flag == BT_RIGHT)); int bit = 0; if( ret ) { BTreeNode* parent = NULL; BTreeNode* current = btree->root; node->left = NULL; node->right = NULL; while( (count > 0) && (current != NULL) ) { bit = pos & 1; pos = pos >> 1; parent = current; if( bit == BT_LEFT ) { current = current->left; } else if( bit == BT_RIGHT ) { current = current->right; } count--; } if( flag == BT_LEFT ) { node->left = current; } else if( flag == BT_RIGHT ) { node->right = current; } if( parent != NULL ) { if( bit == BT_LEFT ) { parent->left = node; } else if( bit == BT_RIGHT ) { parent->right = node; } } else { btree->root = node; } btree->count++; } return ret;}BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count) // O(n){ TBTree* btree = (TBTree*)tree; BTreeNode* ret = NULL; int bit = 0; if( btree != NULL ) { BTreeNode* parent = NULL; BTreeNode* current = btree->root; while( (count > 0) && (current != NULL) ) { bit = pos & 1; pos = pos >> 1; parent = current; if( bit == BT_LEFT ) { current = current->left; } else if( bit == BT_RIGHT ) { current = current->right; } count--; } if( parent != NULL ) { if( bit == BT_LEFT ) { parent->left = NULL; } else if( bit == BT_RIGHT ) { parent->right = NULL; } } else { btree->root = NULL; } ret = current; btree->count = btree->count - recursive_count(ret); } return ret;}BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count) // O(n){ TBTree* btree = (TBTree*)tree; BTreeNode* ret = NULL; int bit = 0; if( btree != NULL ) { BTreeNode* current = btree->root; while( (count > 0) && (current != NULL) ) { bit = pos & 1; pos = pos >> 1; if( bit == BT_LEFT ) { current = current->left; } else if( bit == BT_RIGHT ) { current = current->right; } count--; } ret = current; } return ret;}BTreeNode* BTree_Root(BTree* tree) // O(1){ TBTree* btree = (TBTree*)tree; BTreeNode* ret = NULL; if( btree != NULL ) { ret = btree->root; } return ret;}int BTree_Height(BTree* tree) // O(n){ TBTree* btree = (TBTree*)tree; int ret = 0; if( btree != NULL ) { ret = recursive_height(btree->root); } return ret;}int BTree_Count(BTree* tree) // O(1){ TBTree* btree = (TBTree*)tree; int ret = 0; if( btree != NULL ) { ret = btree->count; } return ret;}int BTree_Degree(BTree* tree) // O(n){ TBTree* btree = (TBTree*)tree; int ret = 0; if( btree != NULL ) { ret = recursive_degree(btree->root); } return ret;}void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div) // O(n){ TBTree* btree = (TBTree*)tree; if( btree != NULL ) { recursive_display(btree->root, pFunc, 0, gap, div); }}
树三:创建二叉树
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。