首页 > 代码库 > 树三:创建二叉树

树三:创建二叉树

指路法定位结点:

  技术分享

  • 通过根结点与目标结点的相对位置进行定位
  • 指路法可以避开二叉树递归的性质“线性”定位
  • 在C语言中可以用 bit 位来进行指路:

    #define BT_LEFT 0

    #define BT_RIGHT 1

    typedef unsigned long long BTPos;

二叉树的存储结构:

/* 结点指针域定义 */typedef struct _tag_BTreeNode BTreeNode;struct _tag_BTreeNode {    BTreeNode* left;    BTreeNode* right; };
/* 头结点定义 */typedef struct _tag_BTree BTree;struct _tag_BTree {    int count;    BTreeNode* root;};
/* 数据元素定义示例 */struct Node {    BTreeNode header;    char v;};

定位操作:

技术分享

/* mani.c */#include <stdio.h>#include <stdlib.h>#include "BTree.h"/* run this program using the console pauser or add your own getch, system("pause") or input loop */struct Node{    BTreeNode header;    char v;};void printf_data(BTreeNode* node){    if( node != NULL )    {        printf("%c", ((struct Node*)node)->v);    }}int main(int argc, char *argv[]){    BTree* tree = BTree_Create();        struct Node n1 = {{NULL, NULL}, A};    struct Node n2 = {{NULL, NULL}, B};    struct Node n3 = {{NULL, NULL}, C};    struct Node n4 = {{NULL, NULL}, D};    struct Node n5 = {{NULL, NULL}, E};    struct Node n6 = {{NULL, NULL}, F};        BTree_Insert(tree, (BTreeNode*)&n1, 0, 0, 0);    BTree_Insert(tree, (BTreeNode*)&n2, 0x00, 1, 0);    BTree_Insert(tree, (BTreeNode*)&n3, 0x01, 1, 0);    BTree_Insert(tree, (BTreeNode*)&n4, 0x00, 2, 0);    BTree_Insert(tree, (BTreeNode*)&n5, 0x02, 2, 0);    BTree_Insert(tree, (BTreeNode*)&n6, 0x02, 3, 0);        printf("Height: %d\n", BTree_Height(tree));    printf("Degree: %d\n", BTree_Degree(tree));    printf("Count: %d\n", BTree_Count(tree));    printf("Position At (0x02, 2): %c\n", ((struct Node*)BTree_Get(tree, 0x02, 2))->v);    printf("Full Tree: \n");        BTree_Display(tree, printf_data, 4, -);        BTree_Delete(tree, 0x00, 1);        printf("After Delete B: \n");    printf("Height: %d\n", BTree_Height(tree));    printf("Degree: %d\n", BTree_Degree(tree));    printf("Count: %d\n", BTree_Count(tree));    printf("Full Tree: \n");        BTree_Display(tree, printf_data, 4, -);        BTree_Clear(tree);        printf("After Clear: \n");    printf("Height: %d\n", BTree_Height(tree));    printf("Degree: %d\n", BTree_Degree(tree));    printf("Count: %d\n", BTree_Count(tree));        BTree_Display(tree, printf_data, 4, -);        BTree_Destroy(tree);        return 0;}
/* BTree.h */#ifndef _BTREE_H_#define _BTREE_H_#define BT_LEFT 0#define BT_RIGHT 1typedef void BTree;typedef unsigned long long BTPos;typedef struct _tag_BTreeNode BTreeNode;struct _tag_BTreeNode{    BTreeNode* left;    BTreeNode* right;};typedef void (BTree_Printf)(BTreeNode*);BTree* BTree_Create();void BTree_Destroy(BTree* tree);void BTree_Clear(BTree* tree);int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag);BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count);BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count);BTreeNode* BTree_Root(BTree* tree);int BTree_Height(BTree* tree);int BTree_Count(BTree* tree);int BTree_Degree(BTree* tree);void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div);#endif
/* BTree.c */#include <stdio.h>#include <malloc.h>#include "BTree.h"typedef struct _tag_BTree TBTree;struct _tag_BTree{    int count;    BTreeNode* root;};static void recursive_display(BTreeNode* node, BTree_Printf* pFunc, int format, int gap, char div) // O(n){    int i = 0;        if( (node != NULL) && (pFunc != NULL) )    {        for(i=0; i<format; i++)        {            printf("%c", div);        }                pFunc(node);                printf("\n");                if( (node->left != NULL) || (node->right != NULL) )        {            recursive_display(node->left, pFunc, format + gap, gap, div);            recursive_display(node->right, pFunc, format + gap, gap, div);        }    }    else    {        for(i=0; i<format; i++)        {            printf("%c", div);        }        printf("\n");    }}static int recursive_count(BTreeNode* root) // O(n){    int ret = 0;        if( root != NULL )    {        ret = recursive_count(root->left) + 1 + recursive_count(root->right);    }        return ret;}static int recursive_height(BTreeNode* root) // O(n){    int ret = 0;        if( root != NULL )    {        int lh = recursive_height(root->left);        int rh = recursive_height(root->right);                ret = ((lh > rh) ? lh : rh) + 1;    }        return ret;}static int recursive_degree(BTreeNode* root) // O(n){    int ret = 0;        if( root != NULL )    {        if( root->left != NULL )        {            ret++;        }                if( root->right != NULL )        {            ret++;        }                if( ret == 1 )        {            int ld = recursive_degree(root->left);            int rd = recursive_degree(root->right);                        if( ret < ld )            {                ret = ld;            }                        if( ret < rd )            {                ret = rd;            }        }    }        return ret;}BTree* BTree_Create() // O(1){    TBTree* ret = (TBTree*)malloc(sizeof(TBTree));        if( ret != NULL )    {        ret->count = 0;        ret->root = NULL;    }        return ret;}void BTree_Destroy(BTree* tree) // O(1){    free(tree);}void BTree_Clear(BTree* tree) // O(1){    TBTree* btree = (TBTree*)tree;        if( btree != NULL )    {        btree->count = 0;        btree->root = NULL;    }}int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag) // O(n) {    TBTree* btree = (TBTree*)tree;    int ret = (btree != NULL) && (node != NULL) && ((flag == BT_LEFT) || (flag == BT_RIGHT));    int bit = 0;        if( ret )    {        BTreeNode* parent = NULL;        BTreeNode* current = btree->root;                node->left = NULL;        node->right = NULL;                while( (count > 0) && (current != NULL) )        {            bit = pos & 1;            pos = pos >> 1;                        parent = current;                        if( bit == BT_LEFT )            {                current = current->left;            }            else if( bit == BT_RIGHT )            {                current = current->right;            }                        count--;        }                if( flag == BT_LEFT )        {            node->left = current;        }        else if( flag == BT_RIGHT )        {            node->right = current;        }                if( parent != NULL )        {            if( bit == BT_LEFT )            {                parent->left = node;            }            else if( bit == BT_RIGHT )            {                parent->right = node;            }        }        else        {            btree->root = node;        }                btree->count++;    }        return ret;}BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count) // O(n){    TBTree* btree = (TBTree*)tree;    BTreeNode* ret = NULL;     int bit = 0;        if( btree != NULL )    {        BTreeNode* parent = NULL;        BTreeNode* current = btree->root;                while( (count > 0) && (current != NULL) )        {            bit = pos & 1;            pos = pos >> 1;                        parent = current;                        if( bit == BT_LEFT )            {                current = current->left;            }            else if( bit == BT_RIGHT )            {                current = current->right;            }                        count--;        }                if( parent != NULL )        {            if( bit == BT_LEFT )            {                parent->left = NULL;            }            else if( bit == BT_RIGHT )            {                parent->right = NULL;            }        }        else        {            btree->root = NULL;        }                ret = current;                btree->count = btree->count - recursive_count(ret);    }        return ret;}BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count) // O(n){    TBTree* btree = (TBTree*)tree;    BTreeNode* ret = NULL;     int bit = 0;        if( btree != NULL )    {        BTreeNode* current = btree->root;                while( (count > 0) && (current != NULL) )        {            bit = pos & 1;            pos = pos >> 1;                        if( bit == BT_LEFT )            {                current = current->left;            }            else if( bit == BT_RIGHT )            {                current = current->right;            }                        count--;        }                ret = current;    }        return ret;}BTreeNode* BTree_Root(BTree* tree) // O(1){    TBTree* btree = (TBTree*)tree;    BTreeNode* ret = NULL;        if( btree != NULL )    {        ret = btree->root;    }        return ret;}int BTree_Height(BTree* tree) // O(n){    TBTree* btree = (TBTree*)tree;    int ret = 0;        if( btree != NULL )    {        ret = recursive_height(btree->root);    }        return ret;}int BTree_Count(BTree* tree) // O(1){    TBTree* btree = (TBTree*)tree;    int ret = 0;        if( btree != NULL )    {        ret = btree->count;    }        return ret;}int BTree_Degree(BTree* tree) // O(n){    TBTree* btree = (TBTree*)tree;    int ret = 0;        if( btree != NULL )    {        ret = recursive_degree(btree->root);    }        return ret;}void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div) // O(n){    TBTree* btree = (TBTree*)tree;        if( btree != NULL )    {        recursive_display(btree->root, pFunc, 0, gap, div);    }}

树三:创建二叉树