首页 > 代码库 > 扫描线三巨头 hdu1928&&hdu 1255 && hdu 1542 [POJ 1151]
扫描线三巨头 hdu1928&&hdu 1255 && hdu 1542 [POJ 1151]
学习链接:http://blog.csdn.net/lwt36/article/details/48908031
学习扫描线主要学习的是一种扫描的思想,后期可以求解很多问题。
扫描线求矩形周长并
hdu 1928
Picture
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4795 Accepted Submission(s): 2339
Problem Description
A number of rectangular posters, photographs and other pictures of the same shape are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be partially or totally covered by the others. The length of the boundary of the union of all rectangles is called the perimeter.
Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.
The corresponding boundary is the whole set of line segments drawn in Figure 2.
The vertices of all rectangles have integer coordinates.
Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.
The corresponding boundary is the whole set of line segments drawn in Figure 2.
The vertices of all rectangles have integer coordinates.
Input
Your program is to read from standard input. The first line contains the number of rectangles pasted on the wall. In each of the subsequent lines, one can find the integer coordinates of the lower left vertex and the upper right vertex of each rectangle. The values of those coordinates are given as ordered pairs consisting of an x-coordinate followed by a y-coordinate.
0 <= number of rectangles < 5000
All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.
Please process to the end of file.
0 <= number of rectangles < 5000
All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.
Please process to the end of file.
Output
Your program is to write to standard output. The output must contain a single line with a non-negative integer which corresponds to the perimeter for the input rectangles.
Sample Input
7
-15 0 5 10
-5 8 20 25
15 -4 24 14
0 -6 16 4
2 15 10 22
30 10 36 20
34 0 40 16
Sample Output
228
Source
IOI 1998
Recommend
linle
1 //#pragma comment(linker, "/STACK:1024000000,1024000000") 2 #include<cstdio> 3 #include<iostream> 4 #include<cstring> 5 #include<algorithm> 6 #include<cmath> 7 #define clr(x) memset(x,0,sizeof(x)) 8 #define MAXN 50010 9 using namespace std; 10 struct edgx 11 { 12 int l,u,x; 13 int d; 14 }edgex[MAXN]; 15 struct edgy 16 { 17 int l,r,y; 18 int d; 19 }edgey[MAXN]; 20 struct seg 21 { 22 int l,r,cov,len; 23 }segt[MAXN<<2]; 24 int cntx,cnty; 25 int x[MAXN],y[MAXN],vec[MAXN]; 26 bool cmpy(edgy a,edgy b) 27 { 28 if(a.y==b.y) return a.d>b.d; 29 return a.y<b.y; 30 } 31 bool cmpx(edgx a,edgx b) 32 { 33 if(a.x==b.x) return a.d>b.d; 34 return a.x<b.x; 35 } 36 void init(int i,int l,int r) 37 { 38 segt[i]=(seg){l,r,0,0}; 39 if(l==r) 40 return ; 41 int mid=(l+r)>>1; 42 init(i<<1,l,mid); 43 init(i<<1|1,mid+1,r); 44 return ; 45 } 46 void pushup(int i) 47 { 48 if(segt[i].cov) 49 { 50 segt[i].len=vec[segt[i].r+1]-vec[segt[i].l]; 51 } 52 else if(segt[i].l==segt[i].r) 53 { 54 segt[i].len=0; 55 } 56 else 57 { 58 segt[i].len=segt[i<<1].len+segt[i<<1|1].len; 59 } 60 return ; 61 } 62 void update(int i,int l,int r,int value) 63 { 64 if(segt[i].l>=l && segt[i].r<=r) 65 { 66 segt[i].cov+=value; 67 pushup(i); 68 return ; 69 } 70 int mid=(segt[i].l+segt[i].r)>>1; 71 if(mid>=r) 72 { 73 update(i<<1,l,r,value); 74 } 75 else if(mid<l) 76 { 77 update(i<<1|1,l,r,value); 78 } 79 else 80 { 81 update(i<<1,l,r,value); 82 update(i<<1|1,l,r,value); 83 } 84 pushup(i); 85 return ; 86 } 87 int main() 88 { 89 int x1,x2,y1,y2,n,m,T,ans,l,r,k; 90 while(scanf("%d",&n)!=EOF) 91 { 92 cntx=0; 93 cnty=0; 94 for(int i=1;i<=n;i++) 95 { 96 scanf("%d%d%d%d",&x1,&y1,&x2,&y2); 97 edgex[++cntx]=(edgx){y1,y2,x1,1}; 98 x[cntx]=x1; 99 edgex[++cntx]=(edgx){y1,y2,x2,-1}; 100 x[cntx]=x2; 101 edgey[++cnty]=(edgy){x1,x2,y1,1}; 102 y[cnty]=y1; 103 edgey[++cnty]=(edgy){x1,x2,y2,-1}; 104 y[cnty]=y2; 105 } 106 n<<=1; 107 ans=0; 108 memcpy(vec,x,sizeof(x)); 109 sort(vec+1,vec+n+1); 110 m=unique(vec+1,vec+n+1)-vec-1; 111 sort(edgey+1,edgey+n+1,cmpy); 112 init(1,1,m); 113 for(int i=1;i<=n;i++) 114 if(edgey[i].l<edgey[i].r) 115 { 116 k=segt[1].len; 117 l=lower_bound(vec+1,vec+m+1,edgey[i].l)-vec; 118 r=lower_bound(vec+1,vec+m+1,edgey[i].r)-vec; 119 update(1,l,r-1,edgey[i].d); 120 ans+=abs(segt[1].len-k); 121 } 122 memcpy(vec,y,sizeof(y)); 123 sort(vec+1,vec+n+1); 124 m=unique(vec+1,vec+n+1)-vec-1; 125 sort(edgex+1,edgex+n+1,cmpx); 126 init(1,1,m); 127 for(int i=1;i<=n;i++) 128 if(edgex[i].l<edgex[i].u) 129 { 130 k=segt[1].len; 131 l=lower_bound(vec+1,vec+m+1,edgex[i].l)-vec; 132 r=lower_bound(vec+1,vec+m+1,edgex[i].u)-vec; 133 update(1,l,r-1,edgex[i].d); 134 ans+=abs(segt[1].len-k); 135 } 136 printf("%d\n",ans); 137 } 138 return 0; 139 }
hdu 1255 矩阵面积并
覆盖的面积
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5718 Accepted Submission(s): 2854
Problem Description
给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.
Input
输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000.
注意:本题的输入数据较多,推荐使用scanf读入数据.
注意:本题的输入数据较多,推荐使用scanf读入数据.
Output
对于每组测试数据,请计算出被这些矩形覆盖过至少两次的区域的面积.结果保留两位小数.
Sample Input
2
5
1 1 4 2
1 3 3 7
2 1.5 5 4.5
3.5 1.25 7.5 4
6 3 10 7
3
0 0 1 1
1 0 2 1
2 0 3 1
Sample Output
7.63
0.00
Author
Ignatius.L & weigang Lee
扫描线三巨头 hdu1928&&hdu 1255 && hdu 1542 [POJ 1151]
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。