首页 > 代码库 > PGM_Foundations
PGM_Foundations
Chain Rule and Bayesian Rule
From the definition of the conditional distribution, we see that
$$P(\alpha_1 \cap ... \cap \alpha_k)=P(\alpha_1)P(\alpha_2 \vert \alpha_1)...P(\alpha_k \vert \alpha_1 \cap ...\cap \alpha_{k-1})~~(Chain~Rule)$$
$$P(\alpha \vert \beta)=\frac{P(\beta \vert \alpha)P(\alpha)}{P(\beta)}~~(Bayesian~Rule)$$
A more general conditional version of Bayes’ rule, where all our probabilities are conditioned on some background event $\gamma$, also holds $$P(\alpha \vert \beta \cap \gamma)=\frac{P(\beta \vert \alpha \cap \gamma)P(\alpha \cap \gamma)}{P(\beta \cap \gamma)}$$
PGM_Foundations
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。