首页 > 代码库 > hdu 4033Regular Polygon(二分+余弦定理)

hdu 4033Regular Polygon(二分+余弦定理)

Regular Polygon

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 3274    Accepted Submission(s): 996


Problem Description
In a 2_D plane, there is a point strictly in a regular polygon with N sides. If you are given the distances between it and N vertexes of the regular polygon, can you calculate the length of reguler polygon‘s side? The distance is defined as dist(A, B) = sqrt( (Ax-Bx)*(Ax-Bx) + (Ay-By)*(Ay-By) ). And the distances are given counterclockwise.
 

 

Input
First a integer T (T≤ 50), indicates the number of test cases. Every test case begins with a integer N (3 ≤ N ≤ 100), which is the number of regular polygon‘s sides. In the second line are N float numbers, indicate the distance between the point and N vertexes of the regular polygon. All the distances are between (0, 10000), not inclusive.
 

 

Output
For the ith case, output one line “Case k: ” at first. Then for every test case, if there is such a regular polygon exist, output the side‘s length rounded to three digits after the decimal point, otherwise output “impossible”.
 

 

Sample Input
233.0 4.0 5.031.0 2.0 3.0
 

 

Sample Output
Case 1: 6.766Case 2: impossible
 

 

Source
The 36th ACM/ICPC Asia Regional Chengdu Site —— Online Contest
 
  已知一个点到正n边形的n个顶点的距离,求正n边形的边长。
思路:
       在已知的表达式中,求不出n边形的边长。但是依据两边之和大于第三边,两边之差小鱼第三边。可以得到这个边的范围.
   然后由于n边形的以任意一个点,连接到所有顶点,所有的夹角之和为360,所以只需要采取二分依次来判断,是否满足。
 
代码:
 1 #include<cstdio> 2 #include<cstring> 3 #include<cmath> 4 #include<algorithm> 5 #define pi acos(-1.0) 6 #define esp 1e-8 7 using namespace std; 8 double aa[105]; 9 int main()10 {11   int cas,n;12   double rr,ll;13   scanf("%d",&cas);14   for(int i=1;i<=cas;i++)15   {16       scanf("%d",&n);17       for(int j=0;j<n;j++)18         scanf("%lf",aa+j);19     //确定上下边界20      ll=20001,rr=0;21     for(int j=0;j<n;j++)22     {23       rr=max(rr,aa[j]+aa[(j+1)%n]);24       ll=min(ll,fabs(aa[j]-aa[(j+1)%n]));25     }26     double mid,sum,cosa;27     printf("Case %d: ",i);28     bool tag=0;29     while(rr>esp+ll)30     {31       mid=ll+(rr-ll)/2;32       sum=0;33       for(int j=0;j<n;j++){34           //oosr=a*a+b*b-mid*mid; 余弦定理求夹角,然后判断所有的夹角之和是否为36035           cosa=(aa[j]*aa[j]+aa[(j+1)%n]*aa[(j+1)%n]-mid*mid)/(2.0*aa[j]*aa[(j+1)%n]);36         sum+=acos(cosa);37       }38        if(fabs(sum-2*pi)<esp){39               tag=1;40            printf("%.3lf\n",mid);41            break;42        }43        else44          if(sum<2*pi)  ll=mid;45          else46              rr=mid;47     }48     if(tag==0)49         printf("impossible\n");50   }51   return 0;52 }
View Code

 

hdu 4033Regular Polygon(二分+余弦定理)