首页 > 代码库 > 哈希表之bkdrhash算法解析及扩展

哈希表之bkdrhash算法解析及扩展

             BKDRHASH是一种字符哈希算法,像BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等,这些都是比较经典的,通过http://blog.csdn.net/wanglx_/article/details/40300363(字符串哈希函数)这篇文章,我们可知道,BKDRHash是比较好的一个获取哈希值的方法。下面就讲解这个BKDRHash函数是如何推导实现的。

            当我看到BKDRHash的代码时,不禁就疑惑了,这里面有个常数Seed,取值为31、131等,为什么要这么取,我取其他的值不行吗?还有为什么要将每个字符相加,并乘以这个Seed? 这些到底是什么含义? 最后想了老半天都是不得其解,最后绕进素数里面出不来了……最后在一位牛人的指点下,才茅塞顿开,下面把我的想法和推导过程记录如下。

BKDRHash计算公式的推导

          由一个字符串(比如:ad)得到其哈希值,为了减少碰撞,应该使该字符串中每个字符都参与哈希值计算,使其符合雪崩效应,也就是说即使改变字符串中的一个字节,也会对最终的哈希值造成较大的影响。我们直接想到的办法就是让字符串中的每个字符相加,得到其和SUM,让SUM作为哈希值,如SUM(ad)= a+d;可是根据ascii码表得知a(97)+d(100)=b(98)+c(99),那么发生了碰撞,我们发现直接求和的话会很容易发生碰撞,那么怎么办哪?我们可以对字符间的差距进行放大,乘以一个系数:

SUM(ad) =系数1 * a + 系数2 * d

SUM(bc)= 系数1 * b + 系数2 * c

系数1不等于系数2,这样SUM(ad)等于SUM(bc)的概率就会大大减小。

           可是我们的字符串不可能只有两位或者三位,我们也不可能为每个系数去人为的赋值,但是字符串中有位数的顺序,比如在”ab”中,b是第0位,a是第1位,那么我们可以用系数的n次方作为每个字符的系数,但这个系数不能为1:

SUM(ad) =系数^1 * a + 系数^0 * d

SUM(bc)= 系数^1 * b + 系数^0 * c

这样我们就大大降低了碰撞的发生,下面我们假设有个字符数组p,有n个元素,那么


即:


下面就是这个“系数”取值的问题,取什么值那?从上面的分析来看,取除1之外的什么值都可以,我们知道整数不是奇数就是偶数,为了便于推算我们将偶数分为2的幂的偶数和非2的幂的偶数,也就是分3种取值讨论

系数的推导

现在我们的任务是推导系数的值,分2的幂的偶数、非2的幂的偶数、奇数三个部分讨论。

a.      取2的幂

假如我们取32,也就是2^5,那么我们计算SUM(ad)和SUM(bc)结果如下:

结果不同,有效处理了碰撞。

但是当我们进一步测试会发现,当我们取SUM(ahijklmn)和SUM(hijklmn)时计算得:

取SUM(abhijklmn)和SUM(abchijklmn)时计算得:

SUM(abcdefghijklmn)和SUM(123456hijklmn)时计算得:

我们会发现,只要最末尾的”hijklmn”这几个字符不变,不管前面怎么变,得到的哈希值都是一样的,完全碰撞了!这是为什么那?

          首先哈希值SUM的存储类型用什么?当然用unsignedint ,因为值会很大,unsigned int 是32位,而只要计算就可能会溢出,CPU对于溢出的处理是抛弃最高位,比如两个unsigned int 的值相加结果为33位,那么最高位33位就会被抛弃,那么我们对上面的情况进行计算:

计算SUM(ahijklmn)和SUM(bhijklmn):

SUM(ahijklmn)= 32^7*a + 32^6*h + 32^5*I + 32^4*j + 32^3*k + 32^2*l + 32^1*m + 32^0*n

SUM(bhijklmn)= 32^7*b + 32^6*h + 32^5*I + 32^4*j + 32^3*k + 32^2*l + 32^1*m + 32^0*n

将32换为2^5得:

SUM(ahijklmn)= 2^35*a + 2^30*h + 2^25*I + 2^20*j + 2^15*k + 2^10*l + 2^5*m + 2^0*n

SUM(bhijklmn)= 2^35*b + 2^30*h + 2^25*I + 2^20*j + 2^15*k + 2^10*l + 2^5*m + 2^0*n

由此可知SUM(ahijklmn)和SUM(bhijklmn)都大于unsignedint所能表达的最大值,所以需要抛弃最高位,也就是对0x100000000(也就是2^33)取余,根据同余定理:

(a+b)%m= (a%m + b%m)%m

(a*b)%m= (a%m * b%m)%m

可知

SUM(ahijklmn)%2^33 = (2^35*a% 2^33  +  2^30*h% 2^33  + … +  2^0*n%2^33)% 2^33

SUM(bhijklmn)%2^33 = (2^35*b % 2^33  +  2^30*h % 2^33  + … +  2^0*n%2^33) 2^33

2^35*a% 2^33和 2^35*b % 2^33 为零,所以因溢出被CPU舍弃,得

SUM(ahijklmn)%2^33 = (2^30*h% 2^33  + … +  2^0*n% 2^33) 2^33

SUM(bhijklmn)%2^33 = (2^30*h % 2^33  + … +  2^0*n% 2^33) 2^33

最终他们的哈希值为

SUM(ahijklmn)= 2^30*h + 2^25*I + 2^20*j + 2^15*k + 2^10*l + 2^5*m + 2^0*n

SUM(bhijklmn)= 2^30*h + 2^25*I + 2^20*j + 2^15*k + 2^10*l + 2^5*m + 2^0*n

所以SUM(ahijklmn)等于SUM(bhijklmn),这就是为什么” hijklmn”不变时,不管前面是什么字符串都会被舍弃,得到一样的字符串。这里用的是32=2^5,只要你用2^n,n不管为多少都不行,都会因为字符串的长度达到一定值而造成前面的被舍弃,造成一直碰撞。

b.       取非2的幂的偶数

既然去取2的幂不行,那么我们取非2的幂的偶数,假如我们取6作为系数,6为2^2+2,我们由上面取2的幂的推导可知,当字符的长度大于等于33时,系数就会变为6^32=3*2^33,可知系数大于2^32,对2^33取余,被舍弃,那么造成只要后32个字符不变,前面不管有多少个同的字符,都会被舍弃,计算所得的哈希值也就一样。

由上面两块可知,系数取偶数行不通

c.      取奇数(大于1)

假如我们取9=2^3+1,9^2=81=80+1,9^3=729=728+1,… ,9^n=9^n-1+1,我们知道9的幂肯定是奇数,那么9^n-1肯定为偶数,由上面的推论可知字符串达到一定的长度时,偶数系数前面的字符是可以舍弃的,可是9^n=9^n-1+1,最后的1是永远不会被舍弃的,所以每个字符都会参与运算,取大于1的奇数可行。

结论

由上面三步的推导可知,这个系数应当选择大于1的奇数,这样可以很好的降低碰撞的几率,那么我们就可以根据上面推导的公式,用代码实现:

bkdrhash的初步代码实现如下:

#include <iostream>
#include <MATH.H>

unsigned int str_hash_1(const char* s)
{
	unsigned char *p = (unsigned char*)s;
	unsigned int hash = 0;
	unsigned int seed = 3;//3,5,7,9,...,etc奇数
	unsigned int nIndex = 0;
	unsigned int nLen = strlen((char*)p);
	while( *p )
	{
		hash = hash + pow(3,nLen-nIndex-1)*(*p);
		++p;
		nIndex++;
	}
	return hash;
}

int main(int argc, char* argv[])
{
	std::cout << str_hash_1("hijklmn")<<std::endl;
	std::cout << str_hash_1("bhijklmn")<<std::endl;
	getchar();
	return 0;
}
其实我们可以对代码进行简化,即利用递归进行实现,但是在使用bkdrhash时你会发现里面大多源码使用的都是特殊的奇数2^n-1,那是因为在CPU的运算中移位和减法比较快。代码如下:

#include <iostream>

unsigned int bkdr_hash(const char* key)
{
	char* str = const_cast<char*>(key);
			
	unsigned int seed = 31; // 31 131 1313 13131 131313 etc.. 37
	unsigned int hash = 0;
	while (*str)
	{
		hash = hash * seed + (*str++);
	}
	return hash;
}

int main(int argc, char* argv[])
{
	std::cout << str_hash("hijklmn")<<std::endl;
	std::cout << str_hash("bhijklmn")<<std::endl;
	getchar();
	return 0;
}

扩展

注意:即使最终求得的bkdrhash值几乎不会冲突碰撞,但他们都是很大的值,不可能直接映射到哈希数组地址上,所以一般都是直接对哈希数组大小取余,以余数作为索引地址,但是这就造成了,可能的地址冲突。bkdrhash值不一样,但是取余后得到的索引地址一样,也就是冲突,只是这种冲突的概率很小。对于哈希表不可能完全消除碰撞,只能降低碰撞的几率。作为对哈希知识的进一步熟悉,下面罗列几点提升哈希表效率的注意点:

1.选用的哈希函数

            哈希函数的目的就是为了产生譬如字符串的哈希值,让不同的字符串尽量产生不同的哈希值的函数就是好的哈希函数,完全不会产生相同的哈希函数就是完美的。

2.处理冲突的方法

         处理冲突的方法有多种,拉链法、线性探测等,我喜欢用拉链法

3.哈希表的大小

         这个哈希表的大小是固定的,但可以动态调整,也就是创建个新的数组,用旧的给新的循环重新计算Key赋值,删除旧的。但最好根据需求数据量设置足够大的初始值,防止动态调整的频繁,因为调整是很费时又费空间的。还有重要的是,这个哈希表的大小要设为一个质数,为什么是质数?因为质数只有1和它本身两个约数,当用bkdrhash算得的key对哈希表大小取余时,不会因为存在公约数而缩小余数的范围,如果余数范围缩小的话,就会加大碰撞的几率。

4.装载因子,即哈希表的饱和程度

一般来说装载因子越小越好,装载因子越小,碰撞也就越小,哈希表的速度就会越快,可是这样会大大的浪费空间,假如装载因子为0.1,那么哈希表只有10%的空间被真正利用,其余的90%都浪费了,这就是时间和空间的矛盾点,为了平衡,现在大部分采用的是0.75作为装载因子,装载因子达到0.75,那么就动态增加哈希表的大小。

哈希表之bkdrhash算法解析及扩展