首页 > 代码库 > pyspark中使用累加器Accumulator统计指标

pyspark中使用累加器Accumulator统计指标

    评价分类模型的性能时需要用到以下四个指标

技术分享

    最开始使用以下代码计算,发现代码需要跑近一个小时,而且这一个小时都花在这四行代码上

# evaluate model
TP = labelAndPreds.filter(lambda (v, p): (v == 1 and p == 1)).count()
FP = labelAndPreds.filter(lambda (v, p): (v == 0 and p == 1)).count()
TN = labelAndPreds.filter(lambda (v, p): (v == 0 and p == 0)).count()
FN = labelAndPreds.filter(lambda (v, p): (v == 1 and p == 0)).count()

    心想着理论上可以只扫描一遍数据就可以计算出这四个指标。

    一开始在foreach函数中传递一个自定义评估函数,这个函数来统计上面四个指标,然后在函数里再使用全局变量TP,TN等。

    但是程序跑完四个指标都还是0,跟初始化时候的一样。后来查资料,发现pyspark有Accumulator(累加器)可以解决这个问题。

代码如下:

# evaluate model
TP = sc.accumulator(0)  #一开始直接用的TP = 0
FP = sc.accumulator(0) 
TN = sc.accumulator(0)
FN = sc.accumulator(0)
def assess(v, p):
    global TP
    global FP
    global TN
    global FN    
    #print ‘tgl\t‘,v,p
    if(v == 1 and p == 1):
        TP += 1
    if(v == 0 and p == 1):
        FP += 1
    if(v == 0 and p == 0):
        TN += 1
    if(v == 1 and p == 0):
        FN += 1
print assess model %s % time.ctime()
labelAndPreds.foreach(lambda(v,p): assess(v, p))
print "TP=", TP
print "FP=", FP
print "TN=", TN
print "FN=", FN
if (TP.value + FP.value) != 0:
      print "The precision = " + str(TP.value*1.0 / (TP.value+FP.value))
if (TP.value + FN.value) != 0:
      print "The recall = " + str(TP.value*1.0 / (TP.value+FN.value))

 

ps:

    pyspark官方文档

    [http://spark.apache.org/docs/latest/api/python/pyspark.html?highlight=accumulator#pyspark.Accumulator]

pyspark中使用累加器Accumulator统计指标