首页 > 代码库 > PAC和白化练习之处理二维数据

PAC和白化练习之处理二维数据

在很多情况下,我们要处理的数据的维度很高,需要提取主要的特征进行分析这就是PAC(主成分分析),白化是为了减少各个特征之间的冗余,因为在许多自然数据中,各个特征之间往往存在着一种关联,为了减少特征之间的关联,需要用到所谓的白化(whitening).

首先下载数据pcaData.rar,下面要对这里面包含的45个2维样本点进行PAC和白化处理,数据中每一列代表一个样本点。

第一步 画出原始数据:

 

第二步:执行PCA,找到数据变化最大的方向:

第三步:将原始数据投射到上面找的两个方向上:

第四步:降维,此例中把数据由2维降维到1维,画出降维后的数据:

第五步:PCA白化处理:

第六步:ZCA白化处理:

下面是程序matlab源代码:

  1 close all;clear all;clc;  2   3 %%================================================================  4 %% Step 0: Load data  5 %  We have provided the code to load data from pcaData.txt into x.  6 %  x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to  7 %  the kth data point.Here we provide the code to load natural image data into x.  8 %  You do not need to change the code below.  9  10 x = load(pcaData.txt,-ascii); 11 figure(1); 12 scatter(x(1, :), x(2, :)); 13 title(Raw data); 14  15  16 %%================================================================ 17 %% Step 1a: Implement PCA to obtain U  18 %  Implement PCA to obtain the rotation matrix U, which is the eigenbasis 19 %  sigma.  20  21 % -------------------- YOUR CODE HERE --------------------  22 u = zeros(size(x, 1)); % You need to compute this 23  24 sigma = x * x/ size(x, 2); 25 [u,S,V] = svd(sigma); 26  27  28  29 % --------------------------------------------------------  30 hold on 31 plot([0 u(1,1)], [0 u(2,1)]); 32 plot([0 u(1,2)], [0 u(2,2)]); 33 scatter(x(1, :), x(2, :)); 34 hold off 35  36 %%================================================================ 37 %% Step 1b: Compute xRot, the projection on to the eigenbasis 38 %  Now, compute xRot by projecting the data on to the basis defined 39 %  by U. Visualize the points by performing a scatter plot. 40  41 % -------------------- YOUR CODE HERE --------------------  42 xRot = zeros(size(x)); % You need to compute this 43 xRot = u * x; 44  45 % --------------------------------------------------------  46  47 % Visualise the covariance matrix. You should see a line across the 48 % diagonal against a blue background. 49 figure(2); 50 scatter(xRot(1, :), xRot(2, :)); 51 title(xRot); 52  53 %%================================================================ 54 %% Step 2: Reduce the number of dimensions from 2 to 1.  55 %  Compute xRot again (this time projecting to 1 dimension). 56 %  Then, compute xHat by projecting the xRot back onto the original axes  57 %  to see the effect of dimension reduction 58  59 % -------------------- YOUR CODE HERE --------------------  60 k = 1; % Use k = 1 and project the data onto the first eigenbasis 61 xHat = zeros(size(x)); % You need to compute this 62 z = u(:, 1:k) * x; 63 xHat = u(:,1:k) * z; 64  65 % --------------------------------------------------------  66 figure(3); 67 scatter(xHat(1, :), xHat(2, :)); 68 title(xHat); 69  70  71 %%================================================================ 72 %% Step 3: PCA Whitening 73 %  Complute xPCAWhite and plot the results. 74  75 epsilon = 1e-5; 76 % -------------------- YOUR CODE HERE --------------------  77 xPCAWhite = zeros(size(x)); % You need to compute this 78  79 xPCAWhite = diag(1 ./ sqrt(diag(S) + epsilon)) * xRot; 80  81  82  83 % --------------------------------------------------------  84 figure(4); 85 scatter(xPCAWhite(1, :), xPCAWhite(2, :)); 86 title(xPCAWhite); 87  88 %%================================================================ 89 %% Step 3: ZCA Whitening 90 %  Complute xZCAWhite and plot the results. 91  92 % -------------------- YOUR CODE HERE --------------------  93 xZCAWhite = zeros(size(x)); % You need to compute this 94  95 xZCAWhite = u * xPCAWhite; 96 % --------------------------------------------------------  97 figure(5); 98 scatter(xZCAWhite(1, :), xZCAWhite(2, :)); 99 title(xZCAWhite);100 101 %% Congratulations! When you have reached this point, you are done!102 %  You can now move onto the next PCA exercise. :)

 

PAC和白化练习之处理二维数据