首页 > 代码库 > 蒟蒻之省选复习——————连载中

蒟蒻之省选复习——————连载中

1.筛法

 1 var
 2     n,m,i,x,tot,j                                 :longint;
 3     prime                                         :array[0..10000050] of boolean;
 4     p                                             :array[0..10000050] of longint;
 5 begin
 6     read(n,m);
 7     for i:=2 to n do
 8     begin
 9         if not prime[i] then
10         begin
11             inc(tot);
12             p[tot]:=i;
13         end;
14         for j:=1 to tot do
15         begin
16             if (i*p[j]>n) then break;
17             prime[i*p[j]]:=true;
18             if i mod p[j]=0 then break;
19         end;
20     end;
21     //for i:=1 to tot do prime[p[i]]:=true;
22     for i:=1 to m do
23     begin
24         read(x);
25         if x=1 then writeln(No) else 
26         if (prime[x]) then writeln(No) else writeln(Yes);
27     end;
28 end.//prime

 

 1 var
 2     n,i,j,tot                                   :longint;
 3     nprime                                     :array[0..1000050] of boolean;
 4     p,phi                                    :array[0..1000050] of longint;
 5 begin
 6     read(n);
 7     phi[1]:=1;
 8     for i:=2 to n do
 9     begin
10         if not nprime[i] then
11         begin
12             phi[i]:=i-1;
13             inc(tot);
14             p[tot]:=i;
15         end;
16         for j:=1 to tot do
17         begin
18             if (i*p[j]>n) then break;
19             nprime[i*p[j]]:=true;
20             if (i mod p[j]=0) then
21             begin
22                 phi[i*p[j]]:=phi[i]*p[j];
23                 break;
24             end else phi[i*p[j]]:=phi[i]*(p[j]-1);
25         end;
26     end;
27     for i:=1 to n do write(phi[i], );
28 end.//phi

 

 1 var
 2     n,i,j,tot                                 :longint;
 3     nprime                                     :array[0..1000050] of boolean;
 4     p,miu                                     :array[0..1000050] of longint;
 5 begin
 6     read(n);
 7     miu[1]:=1;
 8     for i:=2 to n do
 9     begin
10         if not nprime[i] then
11         begin
12             miu[i]:=-1;
13             inc(tot);
14             p[tot]:=i;
15         end;
16         for j:=1 to tot do
17         begin
18             if i*p[j]>n then break;
19             nprime[i*p[j]]:=true;
20             if (i mod p[j]=0) then
21             begin
22                 miu[i*p[j]]:=0;
23                 break;
24             end else miu[i*p[j]]:=-miu[i];
25         end;
26     end;
27     for i:=1 to n do write(miu[i], );
28 end.//miu

 

2.平衡树——sbt

  1 var
  2     N,i,opt,x,t,tot                                 :longint;
  3     left,right,size,key                             :Array[0..100050] of longint;
  4 
  5 procedure lrot(var t:longint);
  6 var
  7     k                                                 :longint;
  8 begin
  9     k:=right[t];
 10     right[t]:=left[k];
 11     left[k]:=t;
 12     size[k]:=size[t];
 13     size[t]:=size[left[t]]+size[right[t]]+1;
 14     t:=k;
 15 end;
 16 
 17 procedure rrot(var t:longint);
 18 var
 19     k                                                 :longint;
 20 begin
 21     k:=left[t];
 22     left[t]:=right[k];
 23     right[k]:=t;
 24     size[k]:=size[t];
 25     size[t]:=size[left[t]]+size[right[t]]+1;
 26     t:=k;
 27 end;
 28 
 29 procedure maintain(var t:longint; flag:boolean);
 30 begin
 31     if not flag then
 32     begin
 33         if size[left[left[t]]]>size[right[t]] then rrot(t) else
 34         if size[right[left[t]]]>size[right[t]] then
 35         begin
 36             lrot(left[t]);
 37             rrot(t);
 38         end else exit;
 39     end else
 40     begin
 41         if size[right[right[t]]]>size[left[t]] then lrot(t) else
 42         if size[left[right[t]]]>size[left[t]] then
 43         begin
 44             rrot(right[t]);
 45             lrot(t);
 46         end else exit;
 47     end;
 48     maintain(left[t],false);
 49     maintain(right[t],true);
 50     maintain(t,false);
 51     maintain(t,true);
 52 end;
 53 
 54 procedure insert(var t:longint; v:longint);
 55 begin
 56     if t=0 then
 57     begin
 58         inc(tot);
 59         t:=tot;
 60         left[t]:=0;
 61         right[t]:=0;
 62         size[t]:=1;
 63         key[t]:=v;
 64         exit;
 65     end;
 66     inc(size[t]);
 67     if v<key[t] then insert(left[t],v) else insert(right[t],v);
 68     maintain(t,v>=key[t]);
 69 end;
 70 
 71 function delete(var t:longint; v:longint):longint;
 72 begin
 73     dec(size[t]);
 74     if (v=key[t]) or ((v<key[t]) and (left[t]=0)) or ((v>key[t]) and (right[t]=0)) then
 75     begin
 76         delete:=key[t];
 77         if (left[t]=0) or (right[t]=0) then t:=left[t]+right[t] else key[t]:=delete(left[t],v+1);
 78     end else
 79     if v<key[t] then exit(delete(left[t],v)) else exit(delete(right[t],v));
 80 end;
 81 
 82 function rank(var t:longint; v:longint):longint;
 83 begin
 84     if t=0 then exit(1);
 85     if v<=key[t] then exit(rank(left[t],v));
 86     exit(rank(right[t],v)+size[left[t]]+1);
 87 end;
 88 
 89 function select(var t:longint; v:longint):longint;
 90 begin
 91     if v=size[left[t]]+1 then exit(key[t]);
 92     if v<size[left[t]]+1 then exit(select(left[t],v));
 93     exit(select(right[t],v-size[left[t]]-1));
 94 end;
 95 
 96 function pred(var t:longint; v:longint):longint;
 97 begin
 98     if t=0 then exit(-1);
 99     if v<=key[t] then exit(pred(left[t],v));
100     pred:=pred(right[t],v);
101     if pred=-1 then exit(key[t]);
102 end;
103 
104 function succ(var t:longint; v:longint):longint;
105 begin
106     if t=0 then exit(-1);
107     if v>=key[t] then exit(succ(right[t],v));
108     succ:=succ(left[t],v);
109     if succ=-1 then exit(key[t]);
110 end;
111 
112 begin
113     read(N);
114     for i:=1 to N do
115     begin
116         read(opt,x);
117         if (opt=1) then insert(t,x) else 
118         if (opt=2) then x:=delete(t,x) else
119         if (opt=3) then writeln(rank(t,x)) else
120         if (opt=4) then writeln(select(t,x)) else
121         if (opt=5) then writeln(pred(t,x)) else
122         if (opt=6) then writeln(succ(t,x));
123     end;
124 end.

 

3.线段树——加法和乘法标签

  1 type
  2     rec                                         =record
  3         l,r                                     :longint;
  4         sum,lz,tg                                 :int64;
  5     end;
  6 
  7 var
  8     t                                             :array[0..300050] of rec;
  9     a                                             :array[0..100050] of int64;
 10     N,M,mo,i,opt,x,y                             :longint;
 11     z                                             :int64;
 12 
 13 procedure build(x,l,r:longint);
 14 var
 15     mid                                         :longint;
 16 begin
 17     t[x].l:=l; t[x].r:=r; t[x].tg:=1;
 18     if (t[x].l=t[x].r) then
 19     begin
 20         t[x].sum:=a[l] mod mo;
 21         exit;
 22     end;
 23     mid:=(t[x].l+t[x].r)>>1;
 24     build(x*2,l,mid);
 25     build(x*2+1,mid+1,r);
 26     t[x].sum:=(t[x*2].sum+t[x*2+1].sum) mod mo;
 27 end;
 28 
 29 procedure update(x:longint);
 30 begin
 31     t[x].sum:=(t[x].sum*t[x].tg+t[x].lz*(t[x].r-t[x].l+1)) mod mo;
 32     if (t[x].l=t[x].r) then
 33     begin
 34         t[x].tg:=1;
 35         t[x].lz:=0;
 36         exit;
 37     end;
 38     t[x*2].tg:=(t[x*2].tg*t[x].tg) mod mo;
 39     t[x*2+1].tg:=(t[x*2+1].tg*t[x].tg) mod mo;
 40     t[x*2].lz:=(t[x*2].lz*t[x].tg+t[x].lz) mod mo;
 41     t[x*2+1].lz:=(t[x*2+1].lz*t[x].tg+t[x].lz) mod mo;
 42     t[x].tg:=1;
 43     t[x].lz:=0;
 44 end;
 45 
 46 procedure c_tg(x,l,r:longint; y:int64);
 47 var
 48     mid                                         :longint;
 49 begin
 50     if (t[x].lz<>0) or (t[x].tg<>1) then update(x);
 51     if (t[x].l=l) and (t[x].r=r) then
 52     begin
 53         t[x].tg:=(t[x].tg*y) mod mo;
 54         exit;
 55     end;
 56     mid:=(t[x].l+t[x].r)>>1;
 57     if l>mid then c_tg(x*2+1,l,r,y) else
 58     if r<=mid then c_tg(x*2,l,r,y) else
 59     begin
 60         c_tg(x*2,l,mid,y);
 61         c_tg(x*2+1,mid+1,r,y);
 62     end;
 63     t[x].sum:=(t[x*2].sum*t[x*2].tg+t[x*2].lz*(t[x*2].r-t[x*2].l+1)+
 64         t[x*2+1].sum*t[x*2+1].tg+t[x*2+1].lz*(t[x*2+1].r-t[x*2+1].l+1)) mod mo;
 65 end;
 66 
 67 procedure c_lz(x,l,r:longint; y:int64);
 68 var
 69     mid                                         :longint;
 70 begin
 71     if (t[x].lz<>0) or (t[x].tg<>1) then update(x);
 72     if (t[x].l=l) and (t[x].r=r) then
 73     begin
 74         t[x].lz:=(t[x].lz+y) mod mo;
 75         exit;
 76     end;
 77     mid:=(t[x].l+t[x].r)>>1;
 78     if l>mid then c_lz(x*2+1,l,r,y) else
 79     if r<=mid then c_lz(x*2,l,r,y) else
 80     begin
 81         c_lz(x*2,l,mid,y);
 82         c_lz(x*2+1,mid+1,r,y);
 83     end;
 84     t[x].sum:=(t[x*2].sum*t[x*2].tg+t[x*2].lz*(t[x*2].r-t[x*2].l+1)+
 85         t[x*2+1].sum*t[x*2+1].tg+t[x*2+1].lz*(t[x*2+1].r-t[x*2+1].l+1)) mod mo;
 86 end;
 87 
 88 function find(x,l,r:longint):int64;
 89 var
 90     mid                                         :longint;
 91 begin
 92     if (t[x].lz<>0) or (t[x].tg<>1) then update(x);
 93     if (t[x].l=l) and (t[x].r=r) then exit(t[x].sum mod mo);
 94     mid:=(t[x].l+t[x].r)>>1;
 95     if l>mid then exit(find(x*2+1,l,r)) else
 96     if r<=mid then exit(find(x*2,l,r)) else
 97         exit((find(x*2,l,mid)+find(x*2+1,mid+1,r)) mod mo);
 98 end;
 99 
100 begin
101     read(N,M,mo);
102     for i:=1 to N do read(a[i]);
103     build(1,1,N);
104     for i:=1 to M do
105     begin
106         read(opt);
107         if opt=1 then
108         begin
109             read(x,y,z);
110             c_tg(1,x,y,z);
111         end else
112         if opt=2 then
113         begin
114             read(x,y,z);
115             c_lz(1,x,y,z);
116         end else
117         begin
118             read(x,y);
119             writeln(find(1,x,y));
120         end;
121     end;
122 end.

 

蒟蒻之省选复习——————连载中