首页 > 代码库 > bnu 34895 Elegant String(矩阵快速幂)
bnu 34895 Elegant String(矩阵快速幂)
题目链接:bnu 34895 Elegant String
题目大意:给定n和k,表示有一个长度为n的序列,序列中的元素由0~k组成,问说有多少个串满足不包含0~k的全排列。
解题思路:矩阵快速幂,根据dp[i][j]表示说第i为有j个相同,写出递推式,根据递推式求出矩阵。
#include <cstdio>
#include <cstring>
typedef long long ll;
const ll MOD = 20140518;
const int N = 20;
struct mat {
int r, c;
ll s[N][N];
void init (int k, int sign) {
memset(s, 0, sizeof(s));
if (sign) {
r = c = k;
for (int i = 1; i <= r; i++) {
for (int j = i; j <= r; j++)
s[i][j] = 1;
if (i == r)
continue;
s[i+1][i] = k+1-i;
}
} else {
r = k;
c = 1;
s[1][1] = k+1;
}
}
void put() {
for (int i = 1; i <= r; i++) {
for (int j = 1; j <= c; j++)
printf("%lld ", s[i][j]);
printf("\n");
}
}
};
mat mul(mat a, mat b) {
mat ans;
memset(ans.s, 0, sizeof(ans.s));
for (int i = 1; i <= a.r; i++) {
for (int j = 1; j <= b.c; j++) {
for (int x = 1; x <= a.c; x++)
ans.s[i][j] = (ans.s[i][j] + a.s[i][x] * b.s[x][j])%MOD;
}
}
ans.r = a.r;
ans.c = b.c;
return ans;
}
ll n;
int k;
ll solve (ll x) {
if (x == 1)
return k+1;
x--;
mat ans, cur;
ans.init(k, 0);
cur.init(k, 1);
while (x) {
if (x&1)
ans = mul(cur, ans);
cur = mul(cur, cur);
x /= 2;
}
int sum = 0;
for (int i = 1; i <= k; i++)
sum = (sum + ans.s[i][1]) % MOD;
return sum;
}
int main () {
int cas;
scanf("%d", &cas);
for (int i = 1; i <= cas; i++) {
scanf("%lld%d", &n, &k);
printf("Case #%d: %lld\n", i, solve(n));
}
return 0;
}
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。