首页 > 代码库 > bnu oj 34985 Elegant String (矩阵+dp)
bnu oj 34985 Elegant String (矩阵+dp)
Elegant String
We define a kind of strings as elegant string: among all the substrings of an elegant string, none of them is a permutation of "0, 1,…, k".
Let function(n, k) be the number of elegant strings of length n which only contains digits from 0 to k (inclusive). Please calculate function(n, k).
Input
Input starts with an integer T (T ≤ 400), denoting the number of test cases.
Each case contains two integers, n and k. n (1 ≤ n ≤ 1018) represents the length of the strings, and k (1 ≤ k ≤ 9) represents the biggest digit in the string.
Output
For each case, first output the case number as "Case #x: ", and x is the case number. Then output function(n, k) mod 20140518 in this case.
Sample Input
2 1 1 7 6
Sample Output
Case #1: 2 Case #2: 818503
Source
2014 ACM-ICPC Beijing Invitational Programming Contest
题意:
用0~k这几个数字构造一个长度为n的序列,使得任意一个子序列都不是k的排列,求种数。
思路:
dp[i][j]表示长度为i,后面有j个不同的种数,填充下一个有两种情况:
1.与后j个都不相同,有k+1-j种填法,得到状态dp[i+1][j+1]。
2.与后j个某个相同,得到dp[i+1][1]、dp[i+1][2]...dp[i+1][j]。
由于n很大,k很小,所以可以用矩阵来加速,构造一行一行的递推关系就可以矩阵快速幂了。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <vector> #include <set> #include <queue> #define maxn 205 #define MAXN 200005 #define INF 0x3f3f3f3f #define mod 20140518 #define eps 1e-6 const double pi=acos(-1.0); typedef long long ll; using namespace std; ll n,k,ans; struct Matrix { int row,col; ll v[15][15]; Matrix operator*(Matrix &tt) { int i,j,k; Matrix temp; temp.row=row; temp.col=tt.col; for(i=1; i<=row; i++) for(j=1; j<=tt.col; j++) { temp.v[i][j]=0; for(k=1; k<=col; k++) { temp.v[i][j]+=v[i][k]*tt.v[k][j]; temp.v[i][j]%=mod; } } return temp; } }; Matrix pow_mod(Matrix x,ll i) // x^i { Matrix tmp; tmp.row=x.row; tmp.col=x.col; memset(tmp.v,0,sizeof(tmp.v)); for(int j=1;j<=x.row;j++) tmp.v[j][j]=1; while(i) { if(i&1) tmp=tmp*x; x=x*x; i>>=1; } return tmp; } void solve() { int i,j; Matrix A,res,x; x.row=1; x.col=k; res.row=1; res.col=k; memset(x.v,0,sizeof(x.v)); x.v[1][1]=k+1; A.row=A.col=k; memset(A.v,0,sizeof(A.v)); for(i=1;i<=k;i++) { A.v[i-1][i]=k-i+2; for(j=i;j<=k;j++) { A.v[j][i]=1; } } res=pow_mod(A,n-1); res=x*res; ans=0; for(i=1;i<=k;i++) { ans+=res.v[1][i]; ans%=mod; } } int main() { int i,j,test,ca=0; scanf("%d",&test); while(test--) { scanf("%lld%lld",&n,&k); solve(); printf("Case #%d: %lld\n",++ca,ans); } return 0; }
bnu oj 34985 Elegant String (矩阵+dp)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。