首页 > 代码库 > Eight(经典题,八数码)

Eight(经典题,八数码)

Eight

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20993    Accepted Submission(s): 5634
Special Judge

Problem Description

The 15-puzzle has been around for over 100 years; even if you don‘t know it by that name, you‘ve seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let‘s call the missing tile ‘x‘; the object of the puzzle is to arrange the tiles so that they are ordered as: 


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 x


where the only legal operation is to exchange ‘x‘ with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 


1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->


The letters in the previous row indicate which neighbor of the ‘x‘ tile is swapped with the ‘x‘ tile at each step; legal values are ‘r‘,‘l‘,‘u‘ and ‘d‘, for right, left, up, and down, respectively. 

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing ‘x‘ tile, of course). 

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
arrangement.

 

 

Input

You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus ‘x‘. For example, this puzzle 

1 2 3 
x 4 6 
7 5 8 

is described by this list: 

1 2 3 x 4 6 7 5 8

 

 

Output

You will print to standard output either the word ``unsolvable‘‘, if the puzzle has no solution, or a string consisting entirely of the letters ‘r‘, ‘l‘, ‘u‘ and ‘d‘ that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.

 

 

Sample Input

2 3 4 1 5 x 7 6 8

 

 

Sample Output

ullddrurdllurdruldr

 

 

//就是类似九宫格那个游戏,不过这里9个格子大小都相等

//学了比较多的东西,才懂怎么做

这里我用的的是 A*+逆序数剪枝+hash判重 做的

A*其实也好理解,就是 bfs 升级版

这个博客写的很详细  http://www.cppblog.com/mythit/archive/2009/04/19/80492.aspx

因为,无论怎么移动,逆序数的奇偶性是不变的,所以用这个能剪枝

最大的问题就是怎么判重了,最多不过 9!种情况么,362880 ,每种情况对应一个数字,用一个 vis[ ]就能判重了,然后hash 判重就好理解了

还有许多方法,推荐一篇博客 http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 有兴趣可以看看

 

技术分享
  1 #include <cstdio>  2 #include <cstring>  3 #include <cmath>  4 #include <cstdlib>  5 #include <algorithm>  6 #include <iostream>  7 #include <queue>  8 #include <map>  9 #include <vector> 10 using namespace std; 11  12 const int maxn=4e5+10;// 400010 最多不超过这么多状态 362880 13 const int hash_[9]={1,1,2,6,24,120,720,5040,40320}; 14 struct Node 15 { 16     int state[3][3]; 17     int x,y; 18     int g,h;        //g代表已耗费,h代表估计耗费 19     int hash_num;   //这个状态的 hash 值 20     bool operator < (const Node PP) const 21     { 22         //return g+h > PP.g+PP.h; 23         //1638ms 24         return h==PP.h ? g>PP.g : h>PP.h; 25         //686ms 26     } 27 }star,ans; 28  29 int dx[4]={1,-1,0,0}; 30 int dy[4]={0,0,1,-1}; 31 char op_c[8]={"durl"}; 32 struct Node2 33 { 34     int pre_hash; 35     char op; 36 }p[maxn]; 37 int vis[maxn]; 38  39  40 int count_hash(Node p)//获得hash值,计算的是 0-8 排列的hash 41 { 42     int i,j,k,hash_num=0; 43     for (i=0;i<9;i++) 44     { 45         k=0; 46         for (j=0;j<i;j++) 47         { 48             if (p.state[j/3][j%3]>p.state[i/3][i%3]) 49                 k++; 50         } 51         hash_num+=k*hash_[i]; 52     } 53     return hash_num; 54 } 55  56 int count_h(Node p)//注意位置,要细致 57 { 58     int i,all=0; 59     for (i=0;i<9;i++) 60     { 61         int e=p.state[i/3][i%3]; 62         if (e) 63         { 64             e-=1; 65             all+=abs(i/3-e/3)+abs(i%3-e%3); 66         } 67     } 68     return all; 69 } 70  71  72 void print(int h) 73 { 74     if (p[h].pre_hash==-1) return; 75     print(p[h].pre_hash); 76     printf("%c",p[h].op); 77 } 78  79 void A_star() 80 { 81     int i; 82  83     star.hash_num = count_hash(star); 84     star.g=0; 85     star.h=count_h(star); 86  87     memset(vis,0,sizeof(vis)); 88     vis[star.hash_num]=1; 89     p[star.hash_num].pre_hash=-1; //头节点 90  91     priority_queue <Node> Q; 92     Q.push(star); 93  94     Node e,n; 95     int xx,yy; 96  97     if (star.hash_num==ans.hash_num)//这个不能丢 98     { 99         printf("\n");100         return;101     }102     while (!Q.empty())103     {104         e=Q.top();105         Q.pop();106 107         for (i=0;i<4;i++)108         {109             xx=e.x+dx[i];110             yy=e.y+dy[i];111             if (xx<0||yy<0||xx>=3||yy>=3) continue;112 113             n=e;114             n.x=xx;115             n.y=yy;116             swap(n.state[xx][yy],n.state[e.x][e.y]);117             n.g++;118             n.h=count_h(n);119             n.hash_num=count_hash(n);120 121             if (vis[n.hash_num]) continue;122 123             p[n.hash_num].pre_hash=e.hash_num;  //记录这个状态的的父 hash124             p[n.hash_num].op=op_c[i];           //记录怎么由父hash移动来的125 126             vis[n.hash_num]=1;127             if (n.hash_num==ans.hash_num)//说明到了128             {129                 print(n.hash_num);130                 printf("\n");131                 return;132             }133             Q.push(n);134         }135     }136 }137 138 int main()139 {140     char str[30];141     int i;142 143     for(i=0;i<9;i++)                    //终点144         ans.state[i/3][i%3]=(i+1)%9;145     ans.hash_num=count_hash(ans);       //终点146 147     while(gets(str))148     {149         int i;150         int len=strlen(str);151 152         int j=0;153         for(i=0,j=0;i<len;i++)154         {155             if(str[i]== )continue;156             if(str[i]==x)157             {158                 star.state[j/3][j%3]=0;159                 star.x=j/3;160                 star.y=j%3;161             }162             else star.state[j/3][j%3]=str[i]-0;163             j++;                         // j/3 记录行数164         }165 166         //判断逆序数167         int temp [9],k=0;168         for (i=0;i<9;i++)169             temp[i]=star.state[i/3][i%3];170         for (i=0;i<9;i++)171         {172             if (temp[i]==0) continue;173             for (int j=0;j<i;j++)174                 if (temp[j]>temp[i]) k++;175         }176         if (k%2)177             printf("unsolvable\n");178         else179             A_star();180     }181     return 0;182 }183 184 /*//错在这,浪费我2小时,才找出来! == 竟然不报错,而且是全局变量,第一次也不会错!!!185 186         for (i=0,j=0;i<len;i++)187         {188             if (str[i]==‘ ‘)continue;189             else if (str[i]==‘x‘)190             {191                 star.x=j/3;192                 star.y=j%3;193                 star.state[j/3][j%3]==0;194             }195             else star.state[j/3][j%3]=str[i]-‘0‘;196             j++;197         }198 */
View Code

 

Eight(经典题,八数码)