首页 > 代码库 > 五子棋AI算法-算杀
五子棋AI算法-算杀
关于剪枝问题
前面讲到的通过Alpha-Beta剪枝和启发式搜索可以将4层搜索的平均时间降低到1秒以下。只有这两个优化方式其实目前最多可以做到6层搜索,就是把AI和玩家各向后推算三步。
6层搜索的棋力其实相当弱,碰到经常玩五子棋的人基本都会输,更不要说对五子棋有研究的玩家。以目前的平均一个节点有50个子节点的搜索方式,把搜索效率提高50倍则可以增加一层搜索深度。而除了前面讲到的AlphaBeta剪枝和启发式搜索,其他的剪枝算法基本都是非安全剪枝。也就是说后序我们会使用一些非安全的剪枝算法来提升搜索效率,而这样做的话,有一定的概率会剪掉一些有益的分支。
这里我们把启发式搜索也当做一种剪枝算法,其实它的实际作用就是剪枝。
克服水平线效应
假设我们目前搜索深度为N层,那么AI只会考虑N层以内的利益,而对N+1层以及以后的局势全然没有任何考虑。那么造成的结果就是AI就是一个视力为N的近视眼,很容易因为N层以内的短期利益而造成大局上的劣势,这就是水平线效应。
如果我们提高搜索深度,依然会存在水平线效应,只是这个水平线会隐藏的更深。想要克服水平线效应,那么就需要在一定情况下对N层以外的节点进行搜索。当然,我们不可能搜索整个博弈树,所以只能在某些前提下进行一些代价不高的深入搜索。
这里我们先实现一种最简单的克服水平线效应的方式-算杀。所谓算杀就是计算出杀棋,杀棋就是指一方通过连续的活三和冲四进行进攻,一直到赢的一种走法。
很显然,同样的深度,算杀要比前面讲的搜索效率高很多。因为算杀的情况下,每个节点只计算活三和冲四的子节点。所以同样是1秒钟的时间,搜索只能进行4层,而算杀很多时候可以进行到12层以上。
为了方便,我们把前面的讲到全面的极大极小值搜索简称为搜索
而且很容易想到,算杀其实也是一种极大极小值搜索,具体的策略是这样的:
- MAX层,只搜索己方的活三和冲四节点,只要有一个子节点的能赢即可
- MIN 层,搜索所有的己方和对面的活三和冲四节点(进攻也是防守),只要有一个子节点能保持不败即可。
算杀的代码实现如下:
1 /* 2 * 算杀 3 * 算杀的原理和极大极小值搜索是一样的 4 * 不过算杀只考虑冲四活三这类对方必须防守的棋 5 * 因此算杀的复杂度虽然是 M^N ,但是底数M特别小,可以算到16步以上的杀棋。 6 */ 7 8 /* 9 * 基本思路 10 * 电脑有活三或者冲四,认为是玩家必须防守的 11 * 玩家防守的时候却不一定根据电脑的棋来走,而是选择走自己最好的棋,比如有可能是自己选择冲四 12 */ 13 14 var R = require("./role.js"); 15 var hasNeighbor = require("./neighbor.js"); 16 var scorePoint = require("./evaluate-point.js"); 17 var S = require("./score.js"); 18 var win = require("./win.js"); 19 var config = require("./config.js"); 20 21 //找到所有比目标分数大的位置 22 var find = function(board, role, score) { 23 var result = []; 24 for(var i=0;i<board.length;i++) { 25 for(var j=0;j<board[i].length;j++) { 26 if(board[i][j] == R.empty) { 27 var p = [i, j]; 28 if(hasNeighbor(board, p, 2, 1)) { //必须是有邻居的才行 29 30 if(role == R.empty) { 31 var s1 = scorePoint(board, p, R.com); 32 var s2 = scorePoint(board, p, R.hum); 33 var s = s1+s2; 34 if(s > score) { 35 p.score = s; 36 result.push(p); 37 } 38 } else { 39 var s = scorePoint(board, p, role); 40 if(s >= score) { 41 p.score = s; 42 result.push(p); 43 } 44 } 45 } 46 } 47 } 48 } 49 //注意对结果进行排序 50 result.sort(function(a, b) { 51 return b.score - a.score; 52 }); 53 return result; 54 } 55 56 var max = function(board, role, deep) { 57 var w = win(board); 58 if(w == role) return true; 59 if(w == R.reverse(role)) return false; 60 if(deep < 0) return false; 61 62 var points = find(board, role, S.BLOCKED_FOUR); 63 if(points.length == 0) return false; 64 for(var i=0;i<points.length;i++) { 65 var p = points[i]; 66 board[p[0]][p[1]] = role; 67 var m = min(board, role, deep-1); 68 board[p[0]][p[1]] = R.empty; 69 if(m) { 70 if(m.length) { 71 m.unshift(p); //注意 unshift 方法返回的是新数组长度,而不是新数组本身 72 return m; 73 } else { 74 return [p]; 75 } 76 } 77 } 78 return false; 79 } 80 81 //只要有一种方式能防守住,就可以了 82 var min = function(board, role, deep) { 83 var w = win(board); 84 if(w == role) return true; 85 if(w == R.reverse(role)) return false; 86 if(deep < 0) return false; 87 var points = find(board, R.empty, S.FOUR); 88 if(points.length == 0) return false; 89 90 var cands = []; 91 for(var i=0;i<points.length;i++) { 92 var p = points[i]; 93 board[p[0]][p[1]] = R.reverse(role); 94 var m = max(board, role, deep-1); 95 board[p[0]][p[1]] = R.empty; 96 if(m) { 97 m.unshift(p); 98 cands.push(m); 99 continue;100 } else {101 return false; //只要有一种能防守住102 }103 }104 return cands[Math.floor(cands.length*Math.random())]; //无法防守住105 }
算杀算法的集成
有了算杀模块之后,我们可以直接对当前棋局进行算杀,但是显然更好的做法是在搜索中进行算杀,通过N层搜索结合M层算杀,我们可以最多搜索到N+M层。
至于如何组合算杀和搜索,最简单的是在每一个非连五的叶节点都进行一次算杀。为了避免算杀出现非最优解,还需要进行迭代加深,具体做法下一章再讲。
五子棋AI算法-算杀