首页 > 代码库 > OpenCV —— 图像局部与部分分割(一)

OpenCV —— 图像局部与部分分割(一)

背景减除

一旦背景模型建立,将背景模型和当前的图像进行比较,然后减去这些已知的背景信息,则剩下的目标物大致就是所求的前景目标了

缺点 —— 该方法基于一个不长成立的假设:所有像素点是独立的

场景建模

新的前景(物体移动的新位置) —— 旧的前景 (物体离开后留下的“空洞”)—— 背景

cvInitLineIterator()  和  CV_NEXT_LINE_POINT() 对任意直线上的像素进行采样

// 从视频的一行中读出所有像素的RGB值,收集这些数值并将其分成三个文件#include <cv.h>#include <highgui.h>int main(int argc,char** argv){    CvCapture* capture=cvCreateFileCapture("");    int max_buffer;    IplImage *rowImage;    int r[10000],g[10000],b[10000];    CvLineIterator iterator;    FILE *fptrb=fopen("blines.csv","w");    // store the data here    FILE *fptrg=fopen("glines.csv","w");    FILE *fptrr=fopen("rlines.csv","w");    CvPoint pt1,pt2;    for (;;)    {        if(!cvGrabFrame(capture))            break;        rowImage=cvRetrieveFrame(capture);        max_buffer=cvInitLineIterator(rowImage,pt1,pt2,&iterator,8,0);        for (int j=0;j<max_buffer;j++)        {            fprintf(fptrb,"%d",iterator.ptr[0]);            fprintf(fptrg,"%d",iterator.ptr[1]);            fprintf(fptrr,"%d",iterator.ptr[2]);            iterator.ptr[2]=255;    // mark this sample in red            CV_NEXT_LINE_POINT(iterator);            fprintf(fptrb,"\n");            fprintf(fptrg,"\n");            fprintf(fptrr,"\n");        }    }    cvReleaseCapture(capture);    fclose(fptrb);    fclose(fptrg);    fclose(fptrr);    return 0;}

 


帧差 —— 用一帧减去另一帧,然后将足够大的差别标为前景,这种方法往往能捕捉运动目标的边缘

cvAbsDiff  cvThreshold (忽略很小的差异——比如小于15,标识其余的作为较大的差别

可以用cvErode() 函数或者用连通域去噪

对于彩色图像,我们用相同的代码对每个颜色通道分别处理,之后在调用cvOr() 函数将所有的通道拼接在一起


平均背景法

—— 计算每个像素的平均值和标准差作为他的背景模型

平均背景法使用四个OpenCV函数 :

cvAcc 累计图像

cvAbsDiff 计算一定时间内的每帧图像之差

cvInRange 将图像分割成前景区和背景区域 (背景模型在已经学习的情况下)

cvOr 将不同的彩色通道图像中合成一个掩码图像

// 背景法 --- 只能用于背景场景中不包含运动的部分// 为需要的不同临时图像和统计属性图像创建指针IplImage *IavgF,IdiffF,*IprevF,*IhiF,*IlowF;IplImage *Iscratch,*Iscratch2;IplImage *Igray1,*Igray2,*Igray3;IplImage *Ilow1,*Ilow2,*Ilow3;IplImage *Ihi1,*Ihi2,*Ihi3;IplImage *Imaskt;float Icount;    // couts number of images learned for averaging later// 创建一个函数给需要的所有临时图像分配内存void AllocateImages(IplImage* I){    CvSize sz=cvGetSize(I);    IavgF=cvCreateImage(sz,IPL_DEPTH_32F,3);    IdiffF=cvCreateImage(sz,IPL_DEPTH_32F,3);    IprevF=cvCreateImage(sz,IPL_DEPTH_32F,3);    IhiF=cvCreateImage(sz,IPL_DEPTH_32F,3);    IlowF=cvCreateImage(sz,IPL_DEPTH_32F,3);    Ilow1=cvCreateImage(sz,IPL_DEPTH_32F,1);    Ilow2=cvCreateImage(sz,IPL_DEPTH_32F,1);    Ilow3=cvCreateImage(sz,IPL_DEPTH_32F,1);    Ihi1=cvCreateImage(sz,IPL_DEPTH_32F,1);    Ihi2=cvCreateImage(sz,IPL_DEPTH_32F,1);    Ihi3=cvCreateImage(sz,IPL_DEPTH_32F,1);    cvZero(IavgF);    cvZero(IdiffF);    cvZero(IprevF);    cvZero(IhiF);    cvZero(IlowF);    Icount = 0.00001;    // Protect against divide by zero    Iscratch =cvCreateImage(sz,IPL_DEPTH_32F,3);    Iscratch2 =cvCreateImage(sz,IPL_DEPTH_32F,3);    Igray1 =cvCreateImage(sz,IPL_DEPTH_32F,1);    Igray2 =cvCreateImage(sz,IPL_DEPTH_32F,1);    Igray3 =cvCreateImage(sz,IPL_DEPTH_32F,1);    Imaskt =cvCreateImage(sz,IPL_DEPTH_32F,1);    cvZero(Iscratch);    cvZero(Iscratch2);}// 学习积累背景图像和每一帧图像差值的绝对值void accumulateBackground(IplImage* I){    static int first=1;    cvCvtScale(I,Iscratch,1,0);    if (!first)    {        cvAcc(Iscratch,IavgF);        cvAbsDiff(Iscratch,IprevF,Iscratch2);        cvAcc(Iscratch,IdiffF);        Icount+=1.0;    }    first=0;    cvCopy(Iscratch,IprevF);}void setHighThreshold(float scale){    cvConvertScale(IdiffF,Iscratch,scale);    cvAdd(Iscratch,IavgF,IhiF);    cvSplit(IhiF,Ihi1,Ihi2,Ihi3,0);}void setLowThreshold(float scale){    cvConvertScale(IdiffF,Iscratch,scale);    cvSub(IavgF,Iscratch,IlowF);    cvSplit(IlowF,Ilow1,Ilow2,Ilow3,0);}// 计算每一个像素的均值和方差观测 (平均绝对差分)void createModelsfromStats(){    cvConvertScale(IavgF,IavgF,(double)(1.0/Icount));    cvConvertScale(IdiffF,IdiffF,(double)(1.0/Icount));    // make sure diff is always something    cvAddS(IdiffF,cvScalar(1.0,1.0,1.0),IdiffF);    setHighThreshold(7.0);    setLowThreshold(6.0);    // 对每一帧图像的绝对差大于平均值7倍的像素都认为是前景    }// 有了背景模型,同时给出了高低阈值,就可以用它将图像分割成前景(不能被背景模型解释的图像部分)和背景(在背景模型中,任何高低阈值之间的图像部分)void backgroundDiff(IplImage* I,IplImage* Imask){    cvCvtScale(I,Iscratch,1,0);    // To float    cvSplit(Iscratch,Igray1,Igray2,Igray3);    // channel 1    cvInRange(Igray1,Ilow1,Ihi1,Imask);    // 是否在高低阈值之间    // channel 2    cvInRange(Igray2,Ilow2,Ihi2,Imask);    // channel 3    cvInRange(Igray3,Ilow3,Ihi3,Imask);    cvOr(Imask,Imaskt,Imask);    // finally , invert the result    cvSubRS(Imask,255,Imask);}void DeallocateImages(){    cvReleaseImage(&IavgF);    cvReleaseImage(&IdiffF);    cvReleaseImage(&IprevF);    cvReleaseImage(&IhiF);    cvReleaseImage(&IlowF);    cvReleaseImage(&Ilow1);    cvReleaseImage(&Ilow2);    cvReleaseImage(&Ilow3);    cvReleaseImage(&Ihi1);    cvReleaseImage(&Ihi2);    cvReleaseImage(&Ihi3);    cvReleaseImage(&Iscratch);    cvReleaseImage(&Iscratch2);    cvReleaseImage(&Igray1);    cvReleaseImage(&Igray2);    cvReleaseImage(&Igray3);    cvReleaseImage(&Imaskt);}

 


累计均值,方差和协方差

均值漂移 

cvRunningAvg  —— 更新时,源图像占一定权重  —— 也称为,跟踪器(前一帧图像褪色的影响,参数a本质上上是设置所需要的时间)

计算方差 —— cvSquareAcc  —— 单个像素的方差正好是平方的均值减去均值的平方

计算协方差 —— cvMultiplyAcc


高级背景模型

复杂的运动目标 —— 得到美国像素或一组像素的时间序列模型 ,这种模型能够很好的处理时间起伏,缺点是需要消耗大量的内存

codebook (编码本) —— 将一个像素现在的观测值和先前的观测值作比较。如果两个值很接近,它被建模为那种颜色下的扰动,如果两个值不接近,它可以产生与该像素相关的一组色彩。

从经验角度看绝大部分背景中的变化倾向于沿着亮度轴,而不是颜色轴

在背景学习模型的codebook方法中,在每一个三颜色轴上,每一个box用两个阈值(最大和最小)定义。如果新的背景模型落到学习的阈值(learnHigh 和 learnLow 之间,这些box的边界将膨胀 (最大阈值变大,最小阈值变小)。如果新的背景样本在box和学习阈值外,将开始生成一个新的box,在背景差分模型中,也能容纳maxMod和minMod阈值。使用这些阈值。可以说,如果一个像素和box边界最大值和最小值非常接近,我们就认为它在box里面。再次调整阈值,允许模型适应特殊情形)

codebook box 容纳呈现多维不连续分布的像素,所以能更好的模拟像素的不连续分布

使用codebook 背景模型

1,使用 函数 update_codebook 在几秒钟或几分钟时间内训练一个基本的背景模型

2,使用 clear_stale_entries 清除stale索引

3,调整阈值 minMod 和 maxMod ui已知前景达到最好的分割

4,保持一个更高级别的场景模型

5,通过 background_diff 使用训练好的模型将前景从背景中分割出来

6,定期更新学习的背景像素

7,在一个频率较慢的情况下,使用函数 clear_stale_entries 定期清理 stale 的codebook 索引

部分代码:

#include <cv.h>#include <highgui.h>#define CHANNELS 3typedef struct ce{    uchar learnHigh[CHANNELS];        uchar learnLow[CHANNELS];    uchar max[CHANNELS];    // High side of box boundary    uchar min[CHANNELS];    int t_last_update;    // allow us to kill stale entries    int stale;    // max negative run}code_element;typedef struct code_book{    code_element **cb;    int numEntries;    int t;    // count every access}codeBook;// 如果一个像素值的美国通道都不在 min - learnLow 和 max + learnHigh 之间,就会生成一个新的码元。距离上次更新和陈旧的时间(t_last_update)用于删除过程中学习的很少使用的码本条目// 背景学习int update_codebook(uchar* p,codeBook& c,unsigned* cbBounds,int numChannels){    int n;    unsigned int high[3],low[3];    for (n=0;n<numChannels;n++)    {        high[n]=*(p+n)+*(cbBounds+n);        if(high[n]>255)            high[n]=255;        low[n]=*(p+n)-*(cbBounds+n);        if(low[n]<0)            low[n]=0;    }    // see if this fits an existing codeword    int matchChannel;    for (int i=0;i<c.numEntries;i++)    {        matchChannel=0;        for (n=0;n<numChannels;n++)        {            if((c.cb[i]->learnLow<=*(p+n))&&(*(p+n)<=c.cb[i]->learnHigh[n]))                matchChannel++;            if (matchChannel==numChannels)    // if an entry war found            {                c.cb[i]->t_last_update=c.t;                    // adjust this codeword for the first channel                for (n=0;n<numChannels;n++)                {                    if (c.cb[i]->max[n]<*(p+n))                    {                        c.cb[i]->max[n]=*(p+n);                    }                    else if (c.cb[i]->min[n]>*(p+n))                    {                        c.cb[i]->min[n]=*(p+n);                    }                }                break;            }        }    }    // overhead to track potential stale entries    for (int s=0;s<c.numEntries;s++)    {        int negRun=c.t-c.cb[s]->t_last_update;        if (c.cb[s]->stale<negRun)        {            c.cb[s]->stale=negRun;        }    }    // enter a new codeword if needed}// 学习有移动前景目标的背景// 背景差分,寻找前景目标

 


用于前景清除的连通部分

 

包含噪声输入掩模图像,然后利用形态学“开”操作将小的噪声缩小至0,接着用“闭”操作重建由于开操作丢失的边缘部分

没有任何理由相信噪声有很大的空间相关性,这些信号又大量的非常小的区域来描述

一个功能强大的在背景中减去噪声的技术