首页 > 代码库 > 枚举(黑白棋)
枚举(黑白棋)
/*代码一:DFS+Enum*/ //Memory Time //240K 344MS //本题只要求输出翻转的次数,因此BFS或DFS都适用 #include<iostream> using namespace std; bool chess[6][6]={false};//利用的只有中心的4x4 bool flag; int step; int r[]={-1,1,0,0,0};//便于翻棋操作 int c[]={0,0,-1,1,0}; bool judge_all(void)//判断“清一色” { int i,j; for(i=1;i<5;i++) for(j=1;j<5;j++) if(chess[i][j]!=chess[1][1]) return false; return true; } void flip(int row,int col)//翻棋 { int i; for(i=0;i<5;i++) chess[row+r[i]][col+c[i]]=!chess[row+r[i]][col+c[i]]; return; } void dfs(int row,int col,int deep) //深搜的迭代回溯是重点,很容易混乱 { if(deep==step) { flag=judge_all(); return; } if(flag||row==5)return; flip(row,col); //翻棋 if(col<4) dfs(row,col+1,deep+1); else dfs(row+1,1,deep+1); flip(row,col); //不符合则翻回来 if(col<4) dfs(row,col+1,deep); else dfs(row+1,1,deep); return; } int main(void) { char temp; int i,j; for(i=1;i<5;i++) for(j=1;j<5;j++) { cin>>temp; if(temp==‘b‘) chess[i][j]=true; } for(step=0;step<=16;step++) //对每一步产生的可能性进行枚举 { //至于为什么是16,考虑到4x4=16格,而每一格只有黑白两种情况,则全部的可能性为2^16 dfs(1,1,0); if(flag)break; } if(flag) cout<<step<<endl; else cout<<"Impossible"<<endl; return 0; }
Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 squares. One side of each piece is white and the other one is black and each piece is lying either it‘s black or white side up. Each round you flip 3 to 5 pieces, thus changing the color of their upper side from black to white and vice versa. The pieces to be flipped are chosen every round according to the following rules:
- Choose any one of the 16 pieces.
- Flip the chosen piece and also all adjacent pieces to the left, to the right, to the top, and to the bottom of the chosen piece (if there are any).
bwbw wwww bbwb bwwb Here "b" denotes pieces lying their black side up and "w" denotes pieces lying their white side up. If we choose to flip the 1st piece from the 3rd row (this choice is shown at the picture), then the field will become:
bwbw bwww wwwb wwwb The goal of the game is to flip either all pieces white side up or all pieces black side up. You are to write a program that will search for the minimum number of rounds needed to achieve this goal.
Input
The input consists of 4 lines with 4 characters "w" or "b" each that denote game field position.
Output
Write to the output file a single integer number - the minimum number of rounds needed to achieve the goal of the game from the given position. If the goal is initially achieved, then write 0. If it‘s impossible to achieve the goal, then write the word "Impossible" (without quotes).
Sample Input
bwwb bbwb bwwb bwww
Sample Output
4
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。