首页 > 代码库 > hihoCoder #1388 : Periodic Signal ( 2016 acm 北京网络赛 F题)

hihoCoder #1388 : Periodic Signal ( 2016 acm 北京网络赛 F题)

时间限制:5000ms
单点时限:5000ms
内存限制:256MB

描述

Profess X is an expert in signal processing. He has a device which can send a particular 1 second signal repeatedly. The signal is A0 ... An-1 under n Hz sampling.

One day, the device fell on the ground accidentally. Profess X wanted to check whether the device can still work properly. So he ran another n Hz sampling to the fallen device and got B0 ... Bn-1.

To compare two periodic signals, Profess X define the DIFFERENCE of signal A and B as follow:
技术分享
You may assume that two signals are the same if their DIFFERENCE is small enough.
Profess X is too busy to calculate this value. So the calculation is on you.

 

题解

技术分享

技术分享

A[]的平方和 与 B[]的平方和可以直接求出。所以只要求出技术分享的最大值即可得到答案。

 

即求A[]与B[]的循环卷积。 FFT求解。

注意由于数据较大,FFT会出现精度问题。最后结果会有浮点精度误差,但是由结果得到的 k 是正确的,所以一个无赖的办法是根据FFT 的结果求 K,然后再自己算一遍得到最后答案。

 

注:题解的标准做法是找两个 10910^910?9?? 左右模数 NTT 后 CRT 。

 

#include <algorithm>#include <cstring>#include <string.h>#include <iostream>#include <list>#include <map>#include <set>#include <stack>#include <string>#include <utility>#include <vector>#include <cstdio>#include <cmath>#define LL long long#define N 60005#define INF 0x3ffffffusing namespace std;const long double PI = acos(-1.0);struct Complex // 复数{    long double r,i;    Complex(long double _r = 0,long double _i = 0)    {        r = _r; i = _i;    }    Complex operator +(const Complex &b)    {        return Complex(r+b.r,i+b.i);    }    Complex operator -(const Complex &b)    {        return Complex(r-b.r,i-b.i);    }    Complex operator *(const Complex &b)    {        return Complex(r*b.r-i*b.i,r*b.i+i*b.r);    }};void change(Complex y[],int len) // 二进制平摊反转置换 O(logn){    int i,j,k;    for(i = 1, j = len/2;i < len-1;i++)    {        if(i < j)swap(y[i],y[j]);        k = len/2;        while( j >= k)        {            j -= k;            k /= 2;        }        if(j < k)j += k;    }}void fft(Complex y[],int len,int on) //DFT和FFT{    change(y,len);    for(int h = 2;h <= len;h <<= 1)    {        Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));        for(int j = 0;j < len;j += h)        {            Complex w(1,0);            for(int k = j;k < j+h/2;k++)            {                Complex u = y[k];                Complex t = w*y[k+h/2];                y[k] = u+t;                y[k+h/2] = u-t;                w = w*wn;            }        }    }    if(on == -1)        for(int i = 0;i < len;i++)            y[i].r /= len;}const int MAXN = 240040;Complex x1[MAXN],x2[MAXN];LL a[MAXN/4],b[MAXN/4];                //原数组long long num[MAXN];     //FFT结果void init(){     memset(num,0,sizeof(num));     memset(x1,0,sizeof(x1));     memset(x2,0,sizeof(x2));}int main(){    int T;    scanf("%d",&T);    LL suma,sumb;    while(T--)        {            int n;             suma=0;sumb=0;            init();            scanf("%d",&n);             for(int i = 0;i < n;i++) {scanf("%lld",&a[i]);suma+=a[i]*a[i];}             for(int i = 0;i < n;i++) {scanf("%lld",&b[i]);sumb+=b[i]*b[i];}            int len = 1;            while( len < 2*n ) len <<= 1;             for(int i = 0;i < n;i++){                x1[i] = Complex(a[i],0);            }             for(int i = 0;i < n;i++){                x2[i] = Complex(b[n-i-1],0);            }      //      for(int i=n;i<len;i++) x1[i]=Complex(0,0);            fft(x1,len,1);fft(x2,len,1);            for(int i = 0;i < len;i++){                x1[i] = x1[i]*x2[i];            }            fft(x1,len,-1);            for(int i = 0;i < len;i++){                num[i] = (LL)(x1[i].r+0.5);            }          //  for(int i = 0;i < len;i++) cout<<num[i]<<endl;          LL ret=num[n-1];          int flag=0;         // cout<<ret<<endl;          for(int i=0;i<n-2;i++) {            //    cout<<num[i]+num[i+n]<<endl;            if(ret<num[i]+num[i+n])                {ret=num[i]+num[i+n]; flag=n-1-i;}                  //注意,此时得到的ret会有很小的浮点精度误差,                //flag表示k,这个是正确的          }          ret=0;          for(int i=0;i<n;i++){            ret+=a[i]*b[(i+flag)%n]; //重新算一遍得到最后答案          }          LL ans=suma+sumb-2*ret;          cout<< ans<<endl;        }    return 0;}        

 

 

hihoCoder #1388 : Periodic Signal ( 2016 acm 北京网络赛 F题)