首页 > 代码库 > Oracle 索引 简介
Oracle 索引 简介
1 索引的创建语法:
CREATE UNIUQE | BITMAP INDEX <schema>.<index_name>
ON <schema>.<table_name>
(<column_name> | <expression> ASC | DESC,
<column_name> | <expression> ASC | DESC,...)
TABLESPACE <tablespace_name>
STORAGE <storage_settings>
LOGGING | NOLOGGING
COMPUTE STATISTICS
NOCOMPRESS | COMPRESS<nn>
NOSORT | REVERSE
PARTITION | GLOBAL PARTITION<partition_setting>
相关说明
1)UNIQUE | BITMAP:指定UNIQUE为唯一值索引,BITMAP为位图索引,省略为B-Tree索引。
2)<column_name> | <expression> ASC | DESC:可以对多列进行联合索引,当为expression时即“基于函数的索引”
3)TABLESPACE:指定存放索引的表空间(索引和原表不在一个表空间时效率更高)
4)STORAGE:可进一步设置表空间的存储参数
5)LOGGING | NOLOGGING:是否对索引产生重做日志(对大表尽量使用NOLOGGING来减少占用空间并提高效率)
6)COMPUTE STATISTICS:创建新索引时收集统计信息
7)NOCOMPRESS | COMPRESS<nn>:是否使用“键压缩”(使用键压缩可以删除一个键列中出现的重复值)
8)NOSORT | REVERSE:NOSORT表示与表中相同的顺序创建索引,REVERSE表示相反顺序存储索引值
9)PARTITION | NOPARTITION:可以在分区表和未分区表上对创建的索引进行分区
2 索引特点:
第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
3 索引不足:
第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。
4.限制索引
限制索引是一些没有经验的开发人员经常犯的错误之一。在SQL中有很多陷阱会使一些索引无法使用。下面讨论一些常见的问题:
4.1 使用不等于操作符(<>、!=)
下面的查询即使在cust_rating列有一个索引,查询语句仍然执行一次全表扫描。
select cust_Id,cust_name from customers where cust_rating <> ‘aa‘;
把上面的语句改成如下的查询语句,这样,在采用基于规则的优化器而不是基于代价的优化器(更智能)时,将会使用索引。
select cust_Id,cust_name from customers where cust_rating < ‘aa‘ or cust_rating > ‘aa‘;
特别注意:通过把不等于操作符改成OR条件,就可以使用索引,以避免全表扫描。
4.2 使用IS NULL 或IS NOT NULL
使用IS NULL 或IS NOT NULL同样会限制索引的使用。因为NULL值并没有被定义。在SQL语句中使用NULL会有很多的麻烦。
因此建议开发人员在建表时,把需要索引的列设成NOT NULL。如果被索引的列在某些行中存在NULL值,就不会使用这个索引
(除非索引是一个位图索引,关于位图索引在稍后在详细讨论)。
4.3 使用函数
如果不使用基于函数的索引,那么在SQL语句的WHERE子句中对存在索引的列使用函数时,会使优化器忽略掉这些索引。
下面的查询不会使用索引(只要它不是基于函数的索引)
select empno,ename,deptno from emp where trunc(hiredate)=‘01-MAY-81‘;
把上面的语句改成下面的语句,这样就可以通过索引进行查找。
select empno,ename,deptno from emp where hiredate<(to_date(‘01-MAY-81‘)+0.9999);
4.4 比较不匹配的数据类型
也是比较难于发现的性能问题之一。 注意下面查询的例子,account_number是一个VARCHAR2类型,在account_number字段上有索引。
下面的语句将执行全表扫描:
select bank_name,address,city,state,zip from banks where account_number = 990354;
Oracle可以自动把where子句变成to_number(account_number)=990354,这样就限制了索引的使用,改成下面的查询就可以使用索引:
select bank_name,address,city,state,zip from banks where account_number =‘990354‘;
特别注意:不匹配的数据类型之间比较会让Oracle自动限制索引的使用,即便对这个查询执行Explain Plan也不能让您明白为什么做了一次“全表扫描”
5 查询索引
查询DBA_INDEXES视图可得到表中所有索引的列表,注意只能通过USER_INDEXES的方法来检索模式(schema)的索引。
访问USER_IND_COLUMNS视图可得到一个给定表中被索引的特定列。
6 组合索引
当某个索引包含有多个已索引的列时,称这个索引为组合(concatented)索引
7 索引的类型
B-树索引、位图索引、HASH索引、索引编排表 、反转键索引、基于函数的索引、分区索引、本地和全局索引
7.1 B树索引(默认类型)
B-tree 特点:
适合与大量的增、删、改(OLTP)
不能用包含OR操作符的查询;
适合高基数的列(唯一值多)
典型的树状结构;
每个结点都是数据块;
大多都是物理上一层、两层或三层不定,逻辑上三层;
叶子块数据是排序的,从左向右递增;
在分支块和根块中放的是索引的范围;
注:B*Tree索引在检索高基数数据列(高基数数据列是指该列有很多不同的值)时提供了最好的性能。
当取出的行数占总行数比例较小时B-Tree索引比全表检索提供了更有效的方法。但当检查的范围超过表的10%时就不能提高取回数据的性能。
7.2 位图索引
Bitmapt 特点:
适合与决策支持系统;
做UPDATE代价非常高;
非常适合OR操作符的查询;
基数比较少的时候才能建位图索引;
注:位图索引最好用于低cardinality列(即列的唯一值除以行数为一个很小的值,接近零),
例如又一个“性别”列,列值有“Male”,“Female”,“Null”等3种,但一共有300万条记录,那么3/3000000约等于0,这种情况下最适合用位图索引
7.3 函数索引
可以在表中创建基于函数的索引。如果没有基于函数的索引,任何在列上执行了函数的查询都不能使用这个列的索引。
必须设置以下两个系统参数:
QUERY_REWRITE_ENABLED=TRUE
QUERY_REWRITE_INTEGRITY=TRUSTED
CREATE UNIUQE | BITMAP INDEX <schema>.<index_name>
ON <schema>.<table_name>
(<column_name> | <expression> ASC | DESC,
<column_name> | <expression> ASC | DESC,...)
TABLESPACE <tablespace_name>
STORAGE <storage_settings>
LOGGING | NOLOGGING
COMPUTE STATISTICS
NOCOMPRESS | COMPRESS<nn>
NOSORT | REVERSE
PARTITION | GLOBAL PARTITION<partition_setting>
相关说明
1)UNIQUE | BITMAP:指定UNIQUE为唯一值索引,BITMAP为位图索引,省略为B-Tree索引。
2)<column_name> | <expression> ASC | DESC:可以对多列进行联合索引,当为expression时即“基于函数的索引”
3)TABLESPACE:指定存放索引的表空间(索引和原表不在一个表空间时效率更高)
4)STORAGE:可进一步设置表空间的存储参数
5)LOGGING | NOLOGGING:是否对索引产生重做日志(对大表尽量使用NOLOGGING来减少占用空间并提高效率)
6)COMPUTE STATISTICS:创建新索引时收集统计信息
7)NOCOMPRESS | COMPRESS<nn>:是否使用“键压缩”(使用键压缩可以删除一个键列中出现的重复值)
8)NOSORT | REVERSE:NOSORT表示与表中相同的顺序创建索引,REVERSE表示相反顺序存储索引值
9)PARTITION | NOPARTITION:可以在分区表和未分区表上对创建的索引进行分区
2 索引特点:
第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
3 索引不足:
第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。
4.限制索引
限制索引是一些没有经验的开发人员经常犯的错误之一。在SQL中有很多陷阱会使一些索引无法使用。下面讨论一些常见的问题:
4.1 使用不等于操作符(<>、!=)
下面的查询即使在cust_rating列有一个索引,查询语句仍然执行一次全表扫描。
select cust_Id,cust_name from customers where cust_rating <> ‘aa‘;
把上面的语句改成如下的查询语句,这样,在采用基于规则的优化器而不是基于代价的优化器(更智能)时,将会使用索引。
select cust_Id,cust_name from customers where cust_rating < ‘aa‘ or cust_rating > ‘aa‘;
特别注意:通过把不等于操作符改成OR条件,就可以使用索引,以避免全表扫描。
4.2 使用IS NULL 或IS NOT NULL
使用IS NULL 或IS NOT NULL同样会限制索引的使用。因为NULL值并没有被定义。在SQL语句中使用NULL会有很多的麻烦。
因此建议开发人员在建表时,把需要索引的列设成NOT NULL。如果被索引的列在某些行中存在NULL值,就不会使用这个索引
(除非索引是一个位图索引,关于位图索引在稍后在详细讨论)。
4.3 使用函数
如果不使用基于函数的索引,那么在SQL语句的WHERE子句中对存在索引的列使用函数时,会使优化器忽略掉这些索引。
下面的查询不会使用索引(只要它不是基于函数的索引)
select empno,ename,deptno from emp where trunc(hiredate)=‘01-MAY-81‘;
把上面的语句改成下面的语句,这样就可以通过索引进行查找。
select empno,ename,deptno from emp where hiredate<(to_date(‘01-MAY-81‘)+0.9999);
4.4 比较不匹配的数据类型
也是比较难于发现的性能问题之一。 注意下面查询的例子,account_number是一个VARCHAR2类型,在account_number字段上有索引。
下面的语句将执行全表扫描:
select bank_name,address,city,state,zip from banks where account_number = 990354;
Oracle可以自动把where子句变成to_number(account_number)=990354,这样就限制了索引的使用,改成下面的查询就可以使用索引:
select bank_name,address,city,state,zip from banks where account_number =‘990354‘;
特别注意:不匹配的数据类型之间比较会让Oracle自动限制索引的使用,即便对这个查询执行Explain Plan也不能让您明白为什么做了一次“全表扫描”
5 查询索引
查询DBA_INDEXES视图可得到表中所有索引的列表,注意只能通过USER_INDEXES的方法来检索模式(schema)的索引。
访问USER_IND_COLUMNS视图可得到一个给定表中被索引的特定列。
6 组合索引
当某个索引包含有多个已索引的列时,称这个索引为组合(concatented)索引
7 索引的类型
B-树索引、位图索引、HASH索引、索引编排表 、反转键索引、基于函数的索引、分区索引、本地和全局索引
7.1 B树索引(默认类型)
B-tree 特点:
适合与大量的增、删、改(OLTP)
不能用包含OR操作符的查询;
适合高基数的列(唯一值多)
典型的树状结构;
每个结点都是数据块;
大多都是物理上一层、两层或三层不定,逻辑上三层;
叶子块数据是排序的,从左向右递增;
在分支块和根块中放的是索引的范围;
注:B*Tree索引在检索高基数数据列(高基数数据列是指该列有很多不同的值)时提供了最好的性能。
当取出的行数占总行数比例较小时B-Tree索引比全表检索提供了更有效的方法。但当检查的范围超过表的10%时就不能提高取回数据的性能。
7.2 位图索引
Bitmapt 特点:
适合与决策支持系统;
做UPDATE代价非常高;
非常适合OR操作符的查询;
基数比较少的时候才能建位图索引;
注:位图索引最好用于低cardinality列(即列的唯一值除以行数为一个很小的值,接近零),
例如又一个“性别”列,列值有“Male”,“Female”,“Null”等3种,但一共有300万条记录,那么3/3000000约等于0,这种情况下最适合用位图索引
7.3 函数索引
可以在表中创建基于函数的索引。如果没有基于函数的索引,任何在列上执行了函数的查询都不能使用这个列的索引。
必须设置以下两个系统参数:
QUERY_REWRITE_ENABLED=TRUE
QUERY_REWRITE_INTEGRITY=TRUSTED
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。