首页 > 代码库 > 作业三
作业三
第1题:
2.利用程序huff_enc和huff_dec进行以下操作.
(a)对Sena、Sensin和Omaha图像进行编码
文件名 | 压缩前大小 | 压缩后大小 | 压缩比 |
Sena | 64kb | 57kb | 0.89 |
Sensin | 64kb | 61kb | 0.95 |
Omaha | 64kb | 58kb | 0.91 |
4.一个信源从符号集A={a1,a2,a3,a4,a5}中选择字母,概率为p(a1)=0.15,p(a2)=0.04,p(a3)=0.26,p(a4)=0.05,p(a5)=0.50.
(a)计算这个信源的熵.
解:H(A) = -0.15*log20.15-0.04*log20.04-0.26*log20.26-0.05*log20.05-0.50*log20.50
=0.15* 2.737+0.04*4.644+0.26*1.943+0.05*4.322+0.5*1
=0.411+0.186+0.505+0.216+0.5
=1.818(bits/symbol)
(b)求这个信源的赫夫曼码.
解: a1:001
a2:0000
a3:01
a4:0001
a5:1
(c)求(b)中代码的平均长度及其冗余度.
解:平均长度:L=0.15*3+0.04*4+0.26*2+0.05*4+0.5*1
=0.45+0.16+0.52+0.2+0.5
=1.83(bits/symbol)
冗余度:L-H(A)=1.83-1.818=0.012(bits/symbol)
第2题:
思考:为什么压缩领域中的编码方法总和二叉树联系在一起呢?
答:我们之前学过前缀编码,为了使用不固定的码长表示单个字符,编码必须符合“前缀编码”的要求,即较短的编码决不能是较长编码的前缀,没有码字是其他码字的前缀。要构造符合这一要求的二进制编码体系,二叉树是最理想的选择,可将码字放在叶子节点上。
第3题:
选做:试将"Shannon-Fano"编程实现.
C++编程:
#include"iostream"
#include "queue"
#include "map"
#include "string"
#include "iterator"
#include "vector"
#include "algorithm"
#include "math.h"
using namespace std;
#define NChar 8
#define Nsymbols 1<<NChar
#define INF 1<<31-1
typedef vector<bool> SF_Code;
map<char,SF_Code> SF_Dic;
int Sumvec[Nsymbols];
class HTree
{
public :
HTree* left;
HTree* right;
char ch;
int weight;
HTree(){left = right = NULL; weight=0;ch =‘\0‘;}
HTree(HTree* l,HTree* r,int w,char c){left = l; right = r; weight=w; ch=c;}
~HTree(){delete left; delete right;}
bool Isleaf(){return !left && !right; }
};
bool comp(const HTree* t1, const HTree* t2)
{ return (*t1).weight>(*t2).weight; }
typedef vector<HTree*> TreeVector;
TreeVector TreeArr;
void Optimize_Tree(int a,int b,HTree& root)
{
if(a==b)
{
root = *TreeArr[a-1];
return;
}
else if(b-a==1)
{
root.left = TreeArr[a-1];
root.right=TreeArr[b-1];
return;
}
int x,minn=INF,curdiff;
for(int i=a;i<b;i++)
{
curdiff = Sumvec[i]*2-Sumvec[a-1]-Sumvec[b];
if(abs(curdiff)<minn){
x=i;
minn = abs(curdiff);
}
else break;
}
HTree*lc = new HTree; HTree *rc = new HTree;
root.left = lc; root.right = rc;
Optimize_Tree(a,x,*lc);
Optimize_Tree(x+1,b,*rc);
}
HTree* BuildTree(int* freqency)
{
int i;
for(i=0;i<Nsymbols;i++)
{
if(freqency[i])
TreeArr.push_back(new HTree (NULL,NULL,freqency[i], (char)i));
}
sort(TreeArr.begin(), TreeArr.end(), comp);
memset(Sumvec,0,sizeof(Sumvec));
for(i=1;i<=TreeArr.size();i++)
Sumvec[i] = Sumvec[i-1]+TreeArr[i-1]->weight;
HTree* root = new HTree;
Optimize_Tree(1,TreeArr.size(),*root);
return root;
}
void Generate_Coding(HTree* root, SF_Code& curcode)
{
if(root->Isleaf())
{
SF_Dic[root->ch] = curcode;
return;
}
SF_Code lcode = curcode;
SF_Code rcode = curcode;
lcode.push_back(false);
rcode.push_back(true);
Generate_Coding(root->left,lcode);
Generate_Coding(root->right,rcode);
}
int main()
{
int freq[Nsymbols] = {0};
char *str = "bbbbbbbccccccaaaaaaaaaaaaaaaeeeeedddddd";
//statistic character frequency
while (*str!=‘\0‘) freq[*str++]++;
HTree* r = BuildTree(freq);
SF_Code nullcode;
Generate_Coding(r,nullcode);
for(map<char,SF_Code>::iterator it = SF_Dic.begin(); it != SF_Dic.end(); it++) {
cout<<(*it).first<<‘\t‘;
std::copy(it->second.begin(),it->second.end(),std::ostream_iterator<bool>(cout));
cout<<endl;
}
}
作业三