首页 > 代码库 > hdu3853之概率dp入门
hdu3853之概率dp入门
LOOPS
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Total Submission(s): 1651 Accepted Submission(s): 653
Problem Description
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).
Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.
The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.
Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.
The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.
Input
The first line contains two integers R and C (2 <= R, C <= 1000).
The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.
It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).
You may ignore the last three numbers of the input data. They are printed just for looking neat.
The answer is ensured no greater than 1000000.
Terminal at EOF
The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.
It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).
You may ignore the last three numbers of the input data. They are printed just for looking neat.
The answer is ensured no greater than 1000000.
Terminal at EOF
Output
A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.
Sample Input
2 2 0.00 0.50 0.50 0.50 0.00 0.50 0.50 0.50 0.00 1.00 0.00 0.00
Sample Output
6.000
/*题意:有一个迷宫r行m列,开始点在[1,1]现在要走到[r,c] 对于在点[x,y]可以打开一扇门走到[x+1,y]或者[x,y+1] 消耗2点魔力 问平均消耗多少魔力能走到[r,c] 分析:假设dp[i][j]表示在点[i,j]到达[r,c]所需要消耗的平均魔力(期望) 则从dp[i][j]可以到达: dp[i][j],dp[i+1,j],dp[i][j+1]; 对应概率分别为: p1,p2,p3 由E(aA+bB+cC...)=aEA+bEB+cEC+...//包含状态A,B,C的期望可以分解子期望求解 得到dp[i][j]=p1*dp[i][j]+p2*dp[i+1][j]+p3*dp[i][j+1]+2; */ #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <queue> #include <algorithm> #include <map> #include <cmath> #include <iomanip> #define INF 99999999 typedef long long LL; using namespace std; const int MAX=1000+10; int n,m; double dp[MAX][MAX],p[MAX][MAX][3]; int main(){ while(~scanf("%d%d",&n,&m)){ for(int i=1;i<=n;++i){ for(int j=1;j<=m;++j)scanf("%lf%lf%lf",&p[i][j][0],&p[i][j][1],&p[i][j][2]); } memset(dp,0,sizeof dp); for(int i=n;i>=1;--i){ for(int j=m;j>=1;--j){ if(i == n && j == m)continue; if(p[i][j][0] == 1.00)continue;//该点无路可走,期望值肯定为0(dp[i][j]=0) dp[i][j]=(p[i][j][1]*(dp[i][j+1])+p[i][j][2]*(dp[i+1][j])+2)/(1-p[i][j][0]); } } printf("%.3lf\n",dp[1][1]); } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。