首页 > 代码库 > Mahout分步式程序开发 聚类Kmeans

Mahout分步式程序开发 聚类Kmeans

阅读导读:
1.什么是聚类分析?
2.Mahout中的kmeans算法,默认的分融符是什么?
3.用kmeans算法得到的结果有什么特点?




1. 聚类算法kmeans

  聚类分析是数据挖掘及机器学习领域内的重点问题之一,在数据挖掘、模式识别、决策支持、机器学习及图像分割等领域有广泛的应用,是最重要的数据分析方法之一。聚类是在给定的数据集合中寻找同类的数据子集合,每一个子集合形成一个类簇,同类簇中的数据具有更大的相似性。聚类算法大体上可分为基于划分的方法、基于层次的方法、基于密度的方法、基于网格的方法以及基于模型的方法。
  k-means algorithm算法是一种得到最广泛使用的基于划分的聚类算法,把n个对象分为k个簇,以使簇内具有较高的相似度。相似度的计算根据一个簇中对象的平均值来进行。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。
  算法首先随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇,然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。

2. Mahout开发环境介绍

  接上一篇文章:Mahout分步式程序开发 基于物品的协同过滤ItemCF。所有环境变量和系统配置与上文一致!

3. 用Mahout实现聚类算法kmeans

实现步骤:
  • 准备数据文件: randomData.csv
  • Java程序:KmeansHadoop.java
  • 运行程序
  • 聚类结果解读
  • HDFS产生的目录

1). 准备数据文件: randomData.csv

  数据文件randomData.csv,由R语言通过“随机正太分布函数”程序生成,单机内存实验请参考文章:用Maven构建Mahout项目。原始数据文件:这里只截取了一部分数据。

~ vi datafile/randomData.csv
-0.883033363823402 -3.31967192630249
-2.39312626419456 3.34726861118871
2.66976353341256 1.85144276077058
-1.09922906899594 -6.06261735207489
-4.36361936997216 1.90509905380532
-0.00351835125495037 -0.610105996559153
-2.9962958796338 -3.60959839525735
-3.27529418132066 0.0230099799641799
2.17665594420569 6.77290756817957
-2.47862038335637 2.53431833167278
5.53654901906814 2.65089785582474
5.66257474538338 6.86783609641077
-0.558946883114376 1.22332819416237
5.11728525486132 3.74663871584768
1.91240516693351 2.95874731384062
-2.49747101306535 2.05006504756875
3.98781883213459 1.00780938946366
5.47470532716682 5.35084411045171

  注:由于Mahout中kmeans算法,默认的分融符是” “(空格),因些我把逗号分隔的数据文件,改成以空格分隔。

2). Java程序:KmeansHadoop.javakmeans的算法实现,请查看Mahout in Action。

package org.conan.mymahout.cluster08;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapred.JobConf;
import org.apache.mahout.clustering.conversion.InputDriver;
import org.apache.mahout.clustering.kmeans.KMeansDriver;
import org.apache.mahout.clustering.kmeans.RandomSeedGenerator;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.utils.clustering.ClusterDumper;
import org.conan.mymahout.hdfs.HdfsDAO;
import org.conan.mymahout.recommendation.ItemCFHadoop;

public class KmeansHadoop {
private static final String HDFS = "hdfs://192.168.1.210:9000";

public static void main(String[] args) throws Exception {
String localFile = "datafile/randomData.csv";
String inPath = HDFS + "/user/hdfs/mix_data";
String seqFile = inPath + "/seqfile";
String seeds = inPath + "/seeds";
String outPath = inPath + "/result/";
String clusteredPoints = outPath + "/clusteredPoints";

JobConf conf = config();
HdfsDAO hdfs = new HdfsDAO(HDFS, conf);
hdfs.rmr(inPath);
hdfs.mkdirs(inPath);
hdfs.copyFile(localFile, inPath);
hdfs.ls(inPath);

InputDriver.runJob(new Path(inPath), new Path(seqFile), "org.apache.mahout.math.RandomAccessSparseVector");

int k = 3;
Path seqFilePath = new Path(seqFile);
Path clustersSeeds = new Path(seeds);
DistanceMeasure measure = new EuclideanDistanceMeasure();
clustersSeeds = RandomSeedGenerator.buildRandom(conf, seqFilePath, clustersSeeds, k, measure);
KMeansDriver.run(conf, seqFilePath, clustersSeeds, new Path(outPath), measure, 0.01, 10, true, 0.01, false);

Path outGlobPath = new Path(outPath, "clusters-*-final");
Path clusteredPointsPath = new Path(clusteredPoints);
System.out.printf("Dumping out clusters from clusters: %s and clusteredPoints: %s\n", outGlobPath, clusteredPointsPath);

ClusterDumper clusterDumper = new ClusterDumper(outGlobPath, clusteredPointsPath);
clusterDumper.printClusters(null);
}

public static JobConf config() {
JobConf conf = new JobConf(ItemCFHadoop.class);
conf.setJobName("ItemCFHadoop");
conf.addResource("classpath:/hadoop/core-site.xml");
conf.addResource("classpath:/hadoop/hdfs-site.xml");
conf.addResource("classpath:/hadoop/mapred-site.xml");
return conf;
}
}

3). 运行程序

控制台输出:

Delete: hdfs://192.168.1.210:9000/user/hdfs/mix_data
Create: hdfs://192.168.1.210:9000/user/hdfs/mix_data
copy from: datafile/randomData.csv to hdfs://192.168.1.210:9000/user/hdfs/mix_data
ls: hdfs://192.168.1.210:9000/user/hdfs/mix_data
=http://www.mamicode.com/=========================================================>

4). 聚类结果解读

我们可以把上面的日志分解析成3个部分解读
  • 初始化环境
  • 算法执行
  • 打印聚类结果
a. 初始化环境

HDFS的数据目录和工作目录,并上传数据文件。

Delete: hdfs://192.168.1.210:9000/user/hdfs/mix_data
Create: hdfs://192.168.1.210:9000/user/hdfs/mix_data
copy from: datafile/randomData.csv to hdfs://192.168.1.210:9000/user/hdfs/mix_data
ls: hdfs://192.168.1.210:9000/user/hdfs/mix_data
=http://www.mamicode.com/=========================================================>

b. 算法执行

算法执行,有3个步骤。
  • 把原始数据randomData.csv,转成Mahout sequence files of VectorWritable。
  • 通过随机的方法,选中kmeans的3个中心,做为初始集群 。
  • 根据迭代次数的设置,执行MapReduce,进行计算。

1):把原始数据randomData.csv,转成Mahout sequence files of VectorWritable。  程序源代码:

InputDriver.runJob(new Path(inPath), new Path(seqFile), "org.apache.mahout.math.RandomAccessSparseVector");

日志输出:
Job complete: job_local_0001

2):通过随机的方法,选中kmeans的3个中心,做为初始集群 程序源代码:

int k = 3;
Path seqFilePath = new Path(seqFile);
Path clustersSeeds = new Path(seeds);
DistanceMeasure measure = new EuclideanDistanceMeasure();
clustersSeeds = RandomSeedGenerator.buildRandom(conf, seqFilePath, clustersSeeds, k, measure);

日志输出:

Job complete: job_local_0002

3):根据迭代次数的设置,执行MapReduce,进行计算

程序源代码:

KMeansDriver.run(conf, seqFilePath, clustersSeeds, new Path(outPath), measure, 0.01, 10, true, 0.01, false);

日志输出:

Job complete: job_local_0003
Job complete: job_local_0004
Job complete: job_local_0005
Job complete: job_local_0006
Job complete: job_local_0007
Job complete: job_local_0008
Job complete: job_local_0009
Job complete: job_local_0010
Job complete: job_local_0011
Job complete: job_local_0012

c.打印聚类结果

Dumping out clusters from clusters: hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-*-final and clusteredPoints: hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusteredPoints
CL-552{n=443 c=[1.631, -0.412] r=[1.563, 1.407]}
CL-847{n=77 c=[-2.953, -0.971] r=[1.767, 2.189]}
CL-823{n=480 c=[0.219, 2.600] r=[1.479, 1.385]}

运行结果:有3个中心。

Cluster1, 包括443个点,中心坐标[1.631, -0.412]
Cluster2, 包括77个点,中心坐标[-2.953, -0.971]
Cluster3, 包括480 个点,中心坐标[0.219, 2.600]

5). HDFS产生的目录

# 根目录
~ hadoop fs -ls /user/hdfs/mix_data
Found 4 items
-rw-r--r-- 3 Administrator supergroup 36655 2013-10-04 15:31 /user/hdfs/mix_data/randomData.csv
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/seeds
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/seqfile

# 输出目录
~ hadoop fs -ls /user/hdfs/mix_data/result
Found 13 items
-rw-r--r-- 3 Administrator supergroup 194 2013-10-04 15:31 /user/hdfs/mix_data/result/_policy
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusteredPoints
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-0
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-1
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-10-final
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-2
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-3
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-4
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-5
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-6
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-7
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-8
drwxr-xr-x - Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-9

# 产生的随机中心种子目录
~ hadoop fs -ls /user/hdfs/mix_data/seeds
Found 1 items
-rw-r--r-- 3 Administrator supergroup 599 2013-10-04 15:31 /user/hdfs/mix_data/seeds/part-randomSeed

# 输入文件换成Mahout格式文件的目录
~ hadoop fs -ls /user/hdfs/mix_data/seqfile
Found 2 items
-rw-r--r-- 3 Administrator supergroup 0 2013-10-04 15:31 /user/hdfs/mix_data/seqfile/_SUCCESS
-rw-r--r-- 3 Administrator supergroup 31390 2013-10-04 15:31 /user/hdfs/mix_data/seqfile/part-m-00000

4. 用R语言可视化结果

  分别把聚类后的点,保存到不同的cluster*.csv文件,然后用R语言画图。

c1<-read.csv(file="cluster1.csv",sep=",",header=FALSE)
c2<-read.csv(file="cluster2.csv",sep=",",header=FALSE)
c3<-read.csv(file="cluster3.csv",sep=",",header=FALSE)
y<-rbind(c1,c2,c3)
cols<-c(rep(1,nrow(c1)),rep(2,nrow(c2)),rep(3,nrow(c3)))
plot(y, col=c("black","blue","green")[cols])
center<-matrix(c(1.631, -0.412,-2.953, -0.971,0.219, 2.600),ncol=2,byrow=TRUE)
points(center, col="violetred", pch = 19)

  从上图中,我们看到有 黑,蓝,绿,三种颜色的空心点,这些点就是原始数据。3个紫色实点,是Mahout的kmeans后生成的3个中心。

  对比文章中用R语言实现的kmeans的分类和中心,都不太一样。用Maven构建Mahout项目  简单总结一下,在使用kmeans时,根据距离算法,阈值,初始中心,迭代次数的不同,kmeans计算的结果是不相同的。
  因此,用kmeans算法,我们一般只能得到一个模糊的分类标准,这个标准对于我们认识未知领域的数据集是很有帮助的。不能做为精确衡量数据的指标。








Mahout分步式程序开发 聚类Kmeans