首页 > 代码库 > kmeans
kmeans
如果是自己写kmeans的话,会怎么写呢?
首先kmeans的算法步骤是
随机选取k个点作为初始的簇心,接着计算各个点到各个簇心的距离,将最近的簇心作为该点的簇心。
接着对相同簇心的点做平均,得到下一个簇心
接着就是不停地迭代,知道收敛为止
那么哪些步骤可以并行计算呢?
这里主要有两部分计算量
第一部分是计算各个点到各个簇心的距离,并选取最短的簇心作为自己的簇心
第二部分是计算每个簇的均值从而获得下个迭代的簇心
目前想到的是:
比如有100w条数据,一共分成10个Partition,需要分成5个簇,那么首先将这个k个簇心分发到这10个Partition中,接着对每个Partition中的数据求到这5个簇心的最短簇心,接着利用reduceByKey计算下一个簇心(reduceByKey会首先计算各个Partition中相同的key值)
好吧,接下来看看spark中是怎么做的
首先KMeans调用了train方法:
def train(
data: RDD[Vector],
k: Int,
maxIterations: Int,
runs: Int,
initializationMode: String): KMeansModel = {
new KMeans().setK(k)
.setMaxIterations(maxIterations)
.setRuns(runs)
.setInitializationMode(initializationMode)
.run(data)
}
所以这里返回的是KMeansModel,这里主要设置了最大的迭代次数,设置簇数目,setRuns是设置并行数,
这里最重要的就是run方法了。
接下来看run
def run(data: RDD[Vector]): KMeansModel = {
if (data.getStorageLevel == StorageLevel.NONE) {
logWarning("The input data is not directly cached, which may hurt performance if its"
+ " parent RDDs are also uncached.")
}
// Compute squared norms and cache them.
//求2范数
val norms = data.map(Vectors.norm(_, 2.0))
norms.persist()
//将向量和平方和zip起来
val zippedData = data.zip(norms).map { case (v, norm) =>
new VectorWithNorm(v, norm)
}
- //这个是大头
val model = runAlgorithm(zippedData)
//原来还能主动unpersist的,涨姿势了
norms.unpersist()
// Warn at the end of the run as well, for increased visibility.
if (data.getStorageLevel == StorageLevel.NONE) {
logWarning("The input data was not directly cached, which may hurt performance if its"
+ " parent RDDs are also uncached.")
}
model
}
这里解释下Vectors.norm(_,2.0)的作用
这里其实是在求2范数,怎么求范数呢?
这是个求P范数
所以这里的2范数其实就是各个维度的属性值平方和的开方
顺便看下norm的源码
def norm(vector: Vector, p: Double): Double = {
require(p >= 1.0, "To compute the p-norm of the vector, we require that you specify a p>=1. " +
s"You specified p=$p.")
val values = vector match {
case DenseVector(vs) => vs
case SparseVector(n, ids, vs) => vs
case v => throw new IllegalArgumentException("Do not support vector type " + v.getClass)
}
val size = values.length
if (p == 1) {
var sum = 0.0
var i = 0
while (i < size) {
sum += math.abs(values(i))
i += 1
}
sum
} else if (p == 2) {
var sum = 0.0
var i = 0
while (i < size) {
sum += values(i) * values(i)
i += 1
}
math.sqrt(sum)
} else if (p == Double.PositiveInfinity) {
var max = 0.0
var i = 0
while (i < size) {
val value = math.abs(values(i))
if (value > max) max = value
i += 1
}
max
} else {
var sum = 0.0
var i = 0
while (i < size) {
sum += math.pow(math.abs(values(i)), p)
i += 1
}
math.pow(sum, 1.0 / p)
}
}
额,似乎没啥好说的,一般来说用1,2,正无穷范数比较多,所以这里单独列出这三个来了。
接下来就主要分析runAlgorithm这个函数(话说这名字取得有点粗糙啊,你runKmeans都比这个好)
这个函数主要的工作就我上面说的那样,只是里面加了一些东西,不太理解。
kmeans
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。