首页 > 代码库 > R:Kmeans
R:Kmeans
例如要把一组数据分成两个簇:
可视化:
参考:
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
> dataset = matrix(c(1,2, + 1.2,2, + 8,9, + 0.9,1.8, + 7,10, + 8.8,9.2), nrow=6, byrow=T) > dataset [,1] [,2] [1,] 1.0 2.0 [2,] 1.2 2.0 [3,] 8.0 9.0 [4,] 0.9 1.8 [5,] 7.0 10.0 [6,] 8.8 9.2 > kmeans(dataset, 2, iter.max = 20) K-means clustering with 2 clusters of sizes 3, 3 Cluster means: [,1] [,2] 1 1.033333 1.933333 2 7.933333 9.400000 Clustering vector: [1] 1 1 2 1 2 2 Within cluster sum of squares by cluster: [1] 0.07333333 2.18666667 (between_SS / total_SS = 98.6 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" [7] "size"
Cluster means: [,1] [,2] 1 1.033333 1.933333 2 7.933333 9.4000006个数据的簇标号分别是:
Clustering vector: [1] 1 1 2 1 2 2
可视化:
> result = kmeans(dataset, 2, iter.max = 20) > plot(c(dataset[,1]), c(dataset[,2]), col=result$cluster)
参考:
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
R:Kmeans
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。