首页 > 代码库 > Candy [leetcode] O(n)时间复杂度,O(1)空间复杂度的方法
Candy [leetcode] O(n)时间复杂度,O(1)空间复杂度的方法
对于ratings[i+1],和ratings[i]的关系有下面几种:
1. 相等。相等时ratings[i+1]相应的糖果数为1
2.ratings[i + 1] > ratings[i]。在这样的情况下,要寻找以ratings[i]開始的递增序列。
3.ratings[i + 1] < ratings[i]。在这样的情况下,要寻找以ratings[i]開始的递减序列。
对于随意一个递增序列 [2 3 4 5 6] 相应的糖果数为 [1 2 3 4 X]
对于随意一个递减序列[6 5 4 3 2]相应的糖果数为[X 4 3 2 1]
X为递增和递减序列交际处的元素相应糖果数。应该是递增序列长度和递减序列长度中较大的值
代码例如以下:
int candy(vector<int> &ratings) { if (ratings.size() == 0) return 0; int sum = 0; int candyNum = 1; for (int i = 0; i < ratings.size() - 1;) { if (ratings[i] == ratings[i + 1]) { //if is the same rating, reset candy num. ie: 1 3 3, for the 2nd 3, candy num is 1 sum += candyNum;//add current candy num i++; candyNum = 1;//set next candy num to 1 } else if (ratings[i] < ratings[i + 1]) { // find ascending sequence, until i is the end of sequence. ie: 1 2 3 1, ratings[i] is 3 for (;i < ratings.size() - 1 && ratings[i] < ratings[i + 1]; i++) sum += (candyNum++); } else if (ratings[i] > ratings[i + 1]) { // find descending sequence, until i is the end of sequence. ie: 3 2 1 3, rating[i] is 1 int decCount = 1; for (; i < ratings.size() - 1 && ratings[i] > ratings[i + 1]; i++) sum += (decCount++); sum += max(candyNum, decCount);//add first element of the sequence //remove last element of the sequence, as i is the end of sequence, and i's candy num shouldn't be calculated into sum sum --; candyNum = 1; } } sum += candyNum; return sum; }
Candy [leetcode] O(n)时间复杂度,O(1)空间复杂度的方法
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。