首页 > 代码库 > To the Max_DP
To the Max_DP
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 46858 | Accepted: 24819 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
40 -2 -7 0 9 2 -6 2-4 1 -4 1 -18 0 -2
Sample Output
15
【题意】 给出一个n*n的方阵,选出一个子矩阵使得里面的值相加最大
【思路】先不管上下,先看左右,找出值最大的j列到k列,然后确定了以后,就好似成了一列,对这列上下求最大子段和
dp[i][j][k]=max(dp[i-1][j][k]+tmp,tmp);tmp=第i行j到k列的值之和
#include<iostream>#include<string.h>#include<stdio.h>using namespace std;const int inf=0x7777777;const int N=107;int a[N][N];int dp[N][N][N];int main(){ int n; while(~scanf("%d",&n)) { memset(dp,0,sizeof(dp)); for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { scanf("%d",&a[i][j]); } } int ans=-inf; for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { int tmp=0; for(int k=j; k<=n; k++) { tmp+=a[i][k]; dp[i][j][k]=max(dp[i-1][j][k]+tmp,tmp); if(dp[i][j][k]>ans) ans=dp[i][j][k]; } } } printf("%d\n",ans); } return 0;}
To the Max_DP
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。