首页 > 代码库 > To the Max

To the Max

         To the Max
--------------------------------------------------------------------------------
Time Limit: 1 Second      Memory Limit: 32768 KB
--------------------------------------------------------------------------------
Problem
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output
  Output the sum of the maximal sub-rectangle.


Example Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Output
15

技术分享
 1 #include<stdio.h> 2 #include<string.h> 3 #define MAXN 105 4 int main() 5 { 6     //freopen("a.txt","r",stdin); 7     int i,j,k,n,t,sum,max; 8     int a[MAXN][MAXN]; 9     while (scanf("%d",&n)!=EOF)10     {11         memset(a,0,sizeof(a));12         for (i=1;i<=n;++i)13         {14             for (j=1;j<=n;++j)15             {16                 scanf("%d",&t);17                 a[i][j]=a[i-1][j]+t;18             }19         }20         max=0;21         for (i=1;i<=n;++i)22         {23             for (j=i;j<=n;++j)24             {25                 sum=0;26                 for (k=1;k<=n;++k)27                 {28                     t=a[j][k]-a[i-1][k];29                     sum+=t;30                     if (sum<0) sum=0;31                     if (sum>max) max=sum;32                 }33             }34         }35         printf("%d\n",max);36     }37     return 0;38 }
AC

 

To the Max